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PREFACE

These notes are part of a space technology course given at the Flight
Research Division of the NACA Langley Aeronautical Laboratory during the
early part of 1958. The course was conducted as a self-education program
within the Flight Research Division and the various Sections of the notes
were prepared for the most part by members of the Division; however, four
of the seventeen Sections were prepared by personnel from the Pilotless
ARircraft Research Division and the Compressibility Research Division who
were very helpful in making the program more complete,

The notes have been compiled on a brief time schedule and it will be
apparent to the reader that the present version is incomplete and to some
extent may lack uniformity in length, type of presentation, and technical
detail in the various Sections. Nevertheless, there has been a demand for
the notes from those who have seen them, and it is thought that they might
serve & useful purpose if they were made available on a wider basis. It is
believed that for the sake of expediency this goal is best acheived by making
the material available now in its present unedited form instead of following
the usual NACA editing procedures.

The notes are arranged under five broad headings. The first four
Sections are concerned with Space Mechanics; the next four with Trajectories
and Guidance; the next two with Propulsion; the next three with Heating and
Materiels; and the final four with Space Environment and Related Problems.

Since these notes have not been technically edited, they are not
suitable for reference in NACA reports,

Henry A, Pearson
Course Coordinator

Maneuver Loads Branch
Flight Research Division
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SECTION I
ELEMENTARY ORBITAL MECHANICS

Motion in a Plane,

When a particle moves in a plane (or space) its
acceleration satisfies the equation F = ma, but the
quantities F and a have not only magnitude but also
direction, In order to deal with magnitudes, we can take
components along a set of coordinate axes, say the rectan-
gular XY axes, thus if the component of F along a line

is F;, and the component of a along that line is a

xX?
then, \/
Fy = may (1.1-1)
eand so on,
If the particle moves in é
Fy
a plane, and its coordinates

are (x,y), the components of

!

acceleration along the co-

ordinate axes are e,

.. dx __dhn
Qp=giT o Qy=—gRE

Ir Fx’ Fy are the components of
the force, the motion of the particle

1s determined by the equations

3<



m—cdj;_f; = F, (1.1-2)

(l. 1'3)

d7y
m-gt= =y

In many cases it is more convenient to use polar co-
ordinates. A particle at P 1is related to the origin by the
coordinates (r,8). Its velocity V 1s resolved into com-

ponents v, along the line OP, and vg

along the line PQ normal to OP, Y
These components have the values: G 4
dr -
r at L Ne .
z 1%
vg = ng (1.1-5) 3

dt
o X

The acceleration also has components a, along OP

and ag along PQ. Projection along the appropriate axes
and a little manipulation will show that

3, = d'r _ (—d—e—f- (1.1-6)
a ,____":_..d_(r‘_d_e) (1.1-7)

If the force F acting on the particle has the component

F along OP and Fg perpendicular to OP, the motion of

r

the particle can be obtalned by solving the equations

4(
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ma, = F, (1,1-8)
mag = Fg (1.1=9)

These equations are the starting point for studying the orbit

of an earth satellite,

Gravitational Forces,
Two bodies of masses m and M are attracted by a

force proportional to the product of the masses, and inversely
GmM

=

The inverse square concept, associated with the name of

proportional to the distance between them, or

Newton (1687) which was also independently proposed by Hooke
(of Hooke's Law fame) has been called "the greatest dis-
covery in nature that ever was since the World's Creation".
If the origin 1is taken as the center of mass M, the point
P as the center of mass m, then the positive direction of

r 1is outward, while the force is directed back along r and

Gm M
| e c———— 1. 2-1
/:r - ( )

Hence, the differential equations of motion from (1.1-8) and
(1.1-9) are

[ gt'; —r gﬁ) J .__/Vl (1.2-2)

8<
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o ‘
r dt (F ) (1.2-3)

We are thus assuming that there are no drag or accelerat-

ing forces at right angles to the radius vector and affect-
ing the rotational motion, that is, Fg = 0.
Equation (1.2-3) can be integrated immediately,

+d6 _
r d‘t_}( (1o 2-L)

This result, which is known as Kepler's Second Law 1s
independent of the form or nature of the attracting force
(in this case, gravity). The constant K has a physical
meaning which can be seen from an examination of the initial .
conditions, At t =0 let the radius be ry, the velocity
Vi3 in a direction T relative to the normal to r,.
Since rde =V cos¥dt the value of K will be

+ 46
jt , V' cosS y = /( (1.2-5)

b<
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The element of area dA swept out by r in moving

through an angle d0 1is
dA=4(r)rd6)
dA
Hence /’(': 2. a9t (1.2-6)

from which follows Kepler's Second Law (derived originally
from observation of planetary motion and published in 1618),
"each planet revolves so that the line joining it to the sun
sweeps over equal areas in equal intervals of time"., (It
should be noted that Kepler's Constant is usually given in
the literature as %% or g o)

We know have the set of simultaneous equations

d’r _ (d8) = _GM -

dt

To find the path or the variation of r with © we must

. dB - }(’

(lo 2-8)

eliminate time between (l.2-7) and (l.2-8), It is conven-

ient to change the variable from r to u = 1/r, whence

ar _ e du

d6~- I 38
Then cfe*__ 1+
gt = K’

dr _dr doe _ K dr__/(a'u

dt~ deée dt r* deé — - d®©

dr_ _sdu d6_ _,,i.d

dt*™ Kde‘ dt ~ K u de*
W e
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With these substitutions equation (1l,2-7) becomes

d>u _ _GM
der T U= Tg=

‘"he solution of equation (l.2-9) can be determined by

(1. 2"9)

inspection as

G M
u=-—pz + A cos 6 (1.2-10)
where A 1s a constant the significance of which remains
to be determined, and thus the path of our mass m about the

center 1s

;. = GKAQ + A cos 6 (1.2-11)

To determine the significance of A we need to

remember that there 1s a set of curves called conic sections
defined by the situation shown in the figure on this page.
Given a point F called

the Focus at a flxed distance

d from a straight line D

called the Directrix. Then if a D
point P at distance r from F p
1s made to move in such a way that C

for any value of '@ the ratio of

distance of P from F to the fr

distance of P from D 1is con-

stant or

—=— = constant

<.
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then the curv‘e defined by the point P 1s called a CONIC

. SECTION. The constant in the sbove ratio is a characteristic
constant of the curve called its eccentricity € which
determines the nature of the curve. Since the distance PD

is d - r cos 9, the eccentricity is

r
€ = gl rces O (1.2-12)

[ | |
or r. - e d + d COS e (1.2-13)

But this is just the relation (1.2-11) that came out of our

equations for the motion of a body under an inverse square

. law of attraction,
What do these curves look like.
€E = O circle
0L € £ | ellipse
E = l’ parabola
c > | hyperbola

These curves are illustrated in figures 1-1 and 1-2, plotted
from equation (l.2-13) rewritten as

_ __€d
r= I+ € cos © (1.2-14)

. and as r'(e)_ l+ c

r(o)— | +€ cos ©
T ge
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For an ellipse there 1s a characteristic dimension which 1is
more useful than d. It is the length of the major axis,
the longest distance from one side to the other through the
focus, from perigee to apogee. Usually we use the semi=-
major axis a, which is related to d by the formula

€ d

a= —e* (1.2=15)

Using this relation the orblt equation is

a(l—-€%)
] + € cos O

The physical significance of the constants in equation

r = (1.2-16)

(1.2-11) has thus been shown by comparison with equations
(1.2-13)., The constant A =1/d while the gravitational
constant G, the primary mass M, and Kepler's constant K

together determine the value ed, that 1is
GcM_ _!
K+~ €d
E

or € = —L-G_ Mg (1.2-17)

The mass m moves in a path about M which 1s a conic
section, Which conic section and why are questions which must
be deferred pending a study of just what it is that fixes the
values of e and d. For this purpose we need to reconsider
the motion in terms of the potential and kinetic energy of

the mass m,

10<




le3 Total Energy.,

We write our principal conclusion thus far by the

equation for the motion of m about M,

r’. = G}?A.. + —é— cos 6 (1.3-1)

In order to establish the factors which determine the

eccentricity and the size of the orbit it is necessary to

examine the total energy.

The kinetic energy is

/{E = —,{—m Vz (1.3-2)

The potentisl energy is defined for conservative

forces by

dP.=—d W (1.3-3)

where W 1is the work defined by

)
W=/ Fdr (1.3-1)

The potential energy is

The total energy 1is then

U=—4my—lm

(103‘6)
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One explanation for the negative sign is that the potential
energy at infinity is taken to be zero, and since potential
energy must increase as the distance from the attracting
center increases then at all distances less than infinity the
potential energy must be negative,

Ir we can calculate the value of U for one point in
the orbit, we know it for every point. At perigee, where r

is a minimum and © = 0, by equation (1l.3-1),

_GM , I
ke T

/
- d (1.3-7)
P
At this point all of the velocity is rotational, there 1s no

radial component and

d 6
But by Kepler's Law, for this, (or any) point in the orbit
r‘t-g% = K , or with equation (1.3-7)
H
V=-A=60, it (1.3-8)
P re K d

Inserting the values from equations (1.3-7) and (1.3-8)
in (1.3-6) gives for the Total Energy

e (5 (5 -

=-Z (ﬁr”)’[’f‘("a%)z

12<
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or, from equation (1,2-17)

=— r; (G'/?/))"(/_G:) (1.3-9)
or 6'_' ‘\//-/- fnu (—G//‘(’)); (1.3-10)

Thus the orbit is elliptic, parabolic or hyperbolic, as the

~total energy 1s negative, zero, or positive. This in turn de-
pends upon the relative magnitudes of the kinetic and potential
-energy. Hyperbolic orbits require the most kinetic energy

(or speed). For the most part we shall be interested in
elliptic orbits, (negative total energy). Such an orbit is
specified by a value of eccentricity, € » equation (1.3-10)‘
and by the semi-major axis a. From equations (1.2-15) and

(1.2-17)

Q=
GM(lI-€ev) (1.3-11)
From equations (1.3-9) and (1.3-11) the total energy
for an elliptical orbit is

= =G Mm
U"‘ 2 a (1.3-12)
Thus it is seen that the total energy in an elliptical orbit
is inversely proportional only to the semi-major axis of the
orbit.
The velocity at any .point in the orbit can be obtained
by substituting equation (1.3-12) into equation (1.3-6),

13<
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_=-GMm _ _/ 2__
U= 20"2”"\/

GMm
r

2 _ 2 _ _I .
V —G-M[_r x (1.3-13)

Establishment of an Orbit,
Thus far we have written equations for orbits in terms
of gravitational constants, G, the mass of the principal

body M, a constant K, the

total ener all of which
are hard to grasp physically. In this Section we shall
convert the equations to a form containing constants which
are more familiar to us,

For example, a body of mass m has a welght mg, at
the surface of the earth because of the attractive force of

gravity. Thus we can relate this weight to the force as
_ G Mm

mq - Rz
o

and we could substitute for the term GM 1its equivalent

(lolp=1)

GM =R ‘70 (1ol-2)

Similarly the constant K 1s fixed, for a rocket by con-
ditions at the instant of burnout, i,e., its distance 1r;
from the origin, its Velocity V; and the angle Y its

path makes with the normal to rj. At this instant, from
equation (1.2-5)

H = r, VI cos T (1ol4=3)
14< A




The total energy is
/
2 Ra.m |
— (10)-].-L|-)
Gl Bty

Hence Lj 25 ’ 3
m T —Ej, [’7/2 - /€V7° (1.4-5)

Inserting these values in the expressions for e (eqe

1.3-10) and a (eq. 1l.3-11) we find that

E’—'J/-(Z) (V )L(Z? E\; )Cos L

It is worth looking at this term Rgo. It has the dimensions

of Velocity squared. Suppose we wanted to establish a
circular orbit of the radius of the earth ry =R with zero

eccentricity, The eccentricity can be zero only if the term

- on the right under the radical is unity. If R, =R, ¥ =0,

Cos ¥ = 1, then this can be true only if V12 = Rgoe
Hence Rgo is the square of a velocity Vo equal to the
velocity for a circular orbit of radius R., We shall write

it this way, 1i.e.,

V°= L//C’;o (1.4=7)

and with this substitution,

€= '}// 4 \l;;)z r/,? V)]co.s Y (1.1,-8)

. }‘3
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Similarly
4= K/GM
I-€e* (1.3-11) )
leads to
a-= =
- 2, _M >
e ~(V.) (1+4-9)
a
or =

/
g 2 - (V,/Vs)’- (1.1-10)

These last equations (1l.4-8), (1.4-9) and (1.4-10)
determine uniquely the size and shape of an orbit in terms
of the three parameters (rl, Vi, Z’l) which characterize
a body at the instant it becomes a free body,il.e. for a

rocket - the 1nstant of burnout,

1.5 Orientation of Orbits,

In addition to kncwing the size and shape of an orbit
it is necessary to know the orientation of the orbit in
space, that is the location of the major axis relative to
the point of burnout. If the vehicle is launched as a free
body with the initial elevation angle ()fl) equal to zero,
burnout 1s the perigee or apogee, depending on the speed.

If )’1 is not zero then the position of the major axis in
space is rotated with respect to the position for zero angle
of elevation,

In calculating orbits with an initial launch elevation
angle we shall use the basic orbit equation (equation 1.,2-16) .

with the origin of © at the perigee and calculate the

16<"
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initial orientation angle of launch (91) using the usual
initial conditions at burnout (V4, ry, ¥;)e
The orbit equation is

a(l-€")

= T+ € <os © (1.2-16)
This can be expressed as
- P -
r= %€ o (1.5-1)
At launch
- P -
= !+ € cos 6, (1.5-2)
(P/r,) - .5
so that cos e' — P e) / (1.5-3)

The eccentricity € could be calculated from equation
(1.44-8); however, it will be found more convenient to use
a slightly different form.

The angle (¥ ) between the instantaneous direction
of the velocity (V) and the normal to the radius (r)

can be given as follows: Ar

tth':. dr—

rde
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Differentiating equation (1,5-1) we obtain

dr - p

d0 — (/4€ ces e)n(- € sin 6) (1.5-5)

But from equation (1.5-1)

2.
(1+ € cos 87 =<~’@) (1.5-6)

and thus
dr' - I‘"- . a .
e L sin 6 (1.5-7)
6 =C7p
Therefore,
tan 7= € 72-' sin @
or tan 7 - /+6 cos 6
and - _tan 7 (1.5-9)
€= —'I% s/n O

Substituting € from equation (1.5-9) into equation (1.5-3)

we obtain for the initial conditions:

_(/r-1) sin 8, )
cos 6 = Pl tan ¥, (1.5-10)
or tan 6, = tan v [W’_—P@T] (1.5-11)

In order tocdtain the parameter p/r; in terms of the

launch conditions, we note from eguation (1,3-11) that

p=a (1-€™)= GKM (1.5-12)

18<
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and from equations (1l.4-2)
h/L
P .-:a(/- € ') = '7.7 (1.5-13)
But from equation (1l.4-3)

/(": rl‘tv,t cost x
(1-5-1h)

Therefore

p=-= \;;"f LA (1.5-15)

and in terms of circular satellite velocity Vs at radius

r
_{’7_=(v./vs)‘cos‘ 7, (1.5-16)

Thus all the elements for calculating orbits have been found.
These equations are listed below, and repeated in Table l-la

in the order usually found most convenient for computing orbits.
In addition, formulas frequently used in orbit calculations

are given in Table 1-1b,
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___P \
r= |— € cos O (1.5-1)
Step 1.
‘%?- (V, JV,) cos ™ (1.5-16)
Step 2.
P/r; A
tan 6 =tanT, [fTr_/‘f—/—] (1.5-11) (L5 =17)
|
Step 3.
/ — -
é = —m[‘% I] (1.5=3)
or tan 7,
E :*% ——s';'n—'é—’- (1.5=9) )

Since the angle (7/) at any point in the orbit 1s often
required (i.e. for re-entry angles) equation (1l.5-8) 1is

also repeated:

€& sin ©
tan./ |+ € cos O (1.5-8)

Tne semi-major axis is given in terms of p as

a= JTex (1.5-18)

The semie-minor axis 1is

b = Yap ' (1.5-19)‘
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The foregoing ecuations (1.5=17) are well suited for the
calculation of the elements of orbits including orientation
when the initial velocity Vl, initial elevation angle )’1,
and initial radius r, are known, A consistent set of

numerical constants for use in orbit computations 1s given

in Teable 1-2,

These equations are written in terms of the circular
satellite velocity (Vg). 1In some cases it might be prefer-
able to use the escape velocity Vg or the circular satellite

velocity at the surface of the earth Vo, as a reference

velocityes Therefore, the equations for these velocities are

Vg ='\’ g, —’,e_.'—b (1.5-20)

Ve =-{27° r,'L , (1.5-21)

given:

Vo= ?. 4 (1.5-22)

The orbit equation is illustrated in figure 1-3 and
the boundary conditions for the orientation angle 8, are
shown in figure 1-l,

In figure 1-3 the origin is at the right focus and the

angle © 1is measured in the counter clockwise direction from

<1<
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perigee. The vehicle is assumed to be launched as a free

body at © = 6. The initial elevation angle Yl is
positive when the initial velocity vector V, 1is inclined
outward from the perpendicular to the initial radius Tj.
Boundaries separating various values of the orientation
angle ©, are shown in figure 1-lj, The curve shown re-

presents the values of (Vy/Vg) and ¥, where ©; equals
90° or 270° as defined by

Vi
Vs

This curve and the axis where'X]_= 0 divide the

cos ‘)7 =/ (1.5-23)

area into the four quadrants as shown in figure 1-l} and as

indicated below:

Conalu"’fons Qundran‘k

T4, lo<il cos T <12 cos ¥, T
Y +, o<'¥i¢os"f, < |0 I
Y-, 04—\\%‘ c.o's7'4[o Ir
S
V-, l°<-\-/Lcos7,’<yFZcosT I
s
3
3
= /R 1 I

" N
"V

ar
b

22<




The eccentricity € is always positive when using

these definitions.
The effect of initial velocity (Vl) on orbits is
‘ shown in figure 1-5 for zeroinitial elevation angle and in
figure 1-6 for )’1 = 10°, It should be noted in figure
1-4 that when the initial elevation angle 1s zero that
8 = 0° for (V3/Vg) > 1  and that @, = 180° for

(Vl/Vs) < 1 so that the eccentricity for Xl =0 is

€ = —',;L—'/ 3YI =0 (1.5-24)

| or E = |~

Vs

In figure 1-6 it can be seen that when the initial

@ (V.)*__/

; M=o (1.5-25)

elevation angle is not zero the orientation angle 6, is
not zero but 1s a function of (Vl/Vs). The eccentricities
6 are larger than those in figure 1-5 but the major axes
| (a) do not change from those given in figure 1-5 since the
length of the major axis depends on V1 and rq but not
Y,
The effect of initial launch angle Yl on orbits for a
constant initial launch velocity V, 1is shown in figure 1-7,
It is seen that the effect of changing the initial launch

oy
“o<

8
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elevation angle )’1 is to change the orientatlon of the
orbit in space and to increase the eccentricity é; .
For example given it 1s seen that a 10° elevation angle
causes a rotation of the major axis of about 32°

In plotting orbits with different orientation angles
the second and succeeding orbits must be rotated through

an angle 040 :

(10 5-26)

1163 =‘€9/L - 6%3

in order to make the launch points coincide with the launch

point for the first orbit; or the orientation can be

accounted for by defining the orbit as

= P
= 7+€ces(e’+e,) (1.5-21)

where 9' is measured counterclockwise from the initial

radius rqe

Time-Speed relationship in an Orbit.

In addition to the shape and the orientation of orbits
i1t is also important to know the lapse time between points
in the orbit and the speed at each point in the orbit,

The speed can be obtained using the relationship of
equation (l.4-3):

rV cos Y = /( (1.4=3)

24<
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or FVicos 7 = V, cos 7 (1.6-1)
or from equation (1.3-13):

V* = ; R’ [Z' - J (1.6-2)
on V* E [ 2 _ (/— Y, (1. 6-3)
or (V / V) — (I- ‘) (1. 6-L)

The time relationship is not as obvious and will be

derived in SECTION II. The equation derived is:

‘ ) ! -€sin O 2 IS/ ev =) (1.6-5)
t(e)‘C(/-e)[/-»c—':o,e*»//-Tt“" (/+e Tan z)

For parabolic and hyperbolic orbits (€ > 1) the equation

becomes

/ -€s/in 6 €+cosO+7€-1 s;n O
t(6)=C(,_e.) /-/-éio.se /e_—ﬂ"’(“ > = \

o
/+ € cos 6 / (1.6-5a)

where C can be given in the following forms:

7‘ ;o (1. 6-61)

C = - ( ‘(/3)5 os’ 7,/ | (1L.6-6b)

S

C -_--/j%_}/(?f_)’}/(/-e‘)s - (L.6-6¢)

-3 ..
A O™ L TR

-
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The time in equation (1.6-5) 1s measured from the
origin of © which is the perigee,
| If the time from launch or from some other point is
desired, equation (1l.6-5) can be used to get the difference
in the time between any twb points, The time from launch

becomes:

At, = t(8) —t(8) (1.6-7)

From equation (1l.6-5) the period of the orbit can be

determined to be

T= zrr/??; V) (1.6-8)

_ 2T P h
or T“(,_es)%_ [3 (;o) (1.6-9)

Realizable Orbits,

Thus far our principal results are embodled in the
equations which show the relationship between the three
parameters, rl)vls"l’ which define the position and path
of a rocket at the instant of burnout, and the orbit which
results as characterized by its semi-major axis a, 1its
eccentricity € » and its orientation angle 6q. It
would be nice to be able to make plots showing the relation-

ship of these factors, but lj parameters are hard to plot.
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Since the elevation angle ]r does not enter into the
expression for a, we can plot this as a function of rl
and V3 as in figure 1-8., The distances have been ex-
pressed in earth radii R, the speed in terms of Vo, the
speed for a circular orbit of radius R. The plot shows how
as we go farther and farther out, to establish an orbit, we
need to provide less and less speed to establish it, In
fact, if we provide too much, we-will lose it altogether

to a parabolic or hyperbolic orbit, if at any time

e L

8 speed which 1s called the escape velocity. At ry =R,

Vg 36,695 frt/sec
= 25,019 mph
For many purposes, it is convenient to normalize the
velocity not with Vo, but with a speed Vg, which varies
with altitude and 1s the speed for a circular orbit of radius

r1; thus the satellite velocity is

Vs‘[ ’/7} = ,./° <1.7-§)

On this basis, figure 1-8 changes its form slightly, and

becomes figure 1-9,
In order to illustrate the relationship between
eccentricity € and launching conditions it is simplast

7< L
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first to use Vg, rather than V,. On this basis, equation

(1.4=8) vecomes

- [FET T w7 o

It is simpler in this case to use (V]_/Vs)2 as the inde-

pendent variable, since for ¥ = 0,
_ _V_')" < \/.\"
-+ o< ()

which is simple and symmetrical to plot as shown in figure
1-10, There is only one speed V; = Vg which at the altitude
r will produce a circular orbit, and this only 1f ¥ =o0.
Any other speed or any departure from ¥ =0 will produce
a finite value of eccentricity. Thus circular orblts are
exceedingly difficult to establish as the programming re-
quirements on both thrust and direction control are very stiff,.
If we want to show the same information as is given in figure
1-10 in terms of Vl/Vo, ry eand ¥ the plot is somewhat
more complicated, as shown in figure 1-11, which is a nomogram
for the solution of eguation (1.4-8).

The variation of Vg and Vg with the distance from
the center of the earth is shown in figure 1l-12,

The real question, of course, in establishing an orbit,
is one of whether it will clear the earth, We can launch a

rocket at some distance ry, and give it a speed vV, at

<8<
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some angle » but unless the perigee distance, the

point of minimum radius, is greater than the radius of the
earth, we will not clear it, and will not even get one pass.
This ignores the atmosphere, of course, and in the practical
case, unless the perigee distance is at least 50 miles above
the surface, the orbit is of little use.

Now the orbit, in terms of a and € may be written

al(l-¢€?)
|+ € cos O

as

r":;

(1.2-16)

Lence perigee distance (6 = 0) 1is a(l- € ). This distance
does not seem to be expressible as a simple function of
(r1>V1, ¥ ), but we can easlly write a condition for the

limiting elevation angle XL which must not be exceeded if

a(l- €)=>R (1,7-0)

Combination of equations (1.L4-6) and (lo44-8) with (1.7-L)
yields the condition that

\/Z [r—g ,) 7/Z(r./p—/)
Cos}/ (/R Y) n/R (Vn/\/s)‘+/ (1.7-5)

PR
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relations which are plotted in figures 1-13 and 1-1k, for
various values of ry/R from 1 to 60, Note that for
ry = R, Y must be zero, while if we wish to establish
an elliptic orbit at some other values of ry and Vl,

then the elevation angle must be less than the value of X'L

~shown for each value of ry. Another limiting conditlion

applies here} Vl cannot exceed the escape velocity if an

orbit is to be established.

Minimum Altitude Orbits.

The practical use of figures 1-13 and 1-14 is 1limited
by the existence of the atmosphere. The regquirement for an
orbit which does not approach the earth closer than some

specified distance

h. =r_. -R

min m)

is shown in figure 1-15 where the ratio

Fmin = .R_ "'.__'h__m__m'

r ~ R + h,

is plotted as a function of Vl/Vs for various values of

Y.

For example, let us assume we have a satellite vehicle

which we wish to launch into a circular orbit at 150 miles

above the earth, and the maximum expected error in launch

30<
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angle (A ¥ ) 1is 3 degrees. Let us further assume that
we do not want the vehicle to descend below 90 miles, 1In
this case

rmin _ 050 -
-——;—-——» = 156 = 0.9854

1
From figure 1-15 we can see that we need an initial velocity

of about vl/vs = 1,05 or 5 percent above circular satel-
lite velocity to assure that the vehicle does not go below
90 miles,

A smell section of figure 1-15 has been replotted in
figure 1-16,for values of Vl/VS in the neighborhood of
V1/Vs = 1,0. Also shown in figure 1-16, are the eccentricities
and orientation angles associated with the orbits.,

In order to obtain a more direct measure of the minimum
altitude figure 1-17 is presented to be used in conjuction
with figures 1-15 and 1-16. Shown plotted in figure 1-17

i tic T pin/ ry plotted ageinst the minimum altitude

[¢]

[N min for constant values of the launch altitude., For
example, if the vehicle were launched at 150 miles altitude

at a speed ratio of V;/Vg = 1,05 and T, = 3 degrees the
value of  rpyn/ry from figure 1-15 1is rmin/ ry = 0.985,
From figure 1-17 we see that the minimum (perigee) altitude

will be about 90 miles,

ci<
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Table 1-2

Consistent Set of Numerical Constants for Use in

Orbit Computations

Various reference sources give values of the numerical

constants (4, G, R , and g) used in orbit computations,

which differ, It would be desirable to adopt a consistent

set, that is,a set which satisfies the relation

- "
B =GM =R go

The following set is a consistent set,

G = 3.4y x 10"8 ftu/lb secu universal gravitation
constant

2
= 6,66 x 1070 Lmes cm

gm2

B = 14077 x 1016 ft3/sec2
3.986 x 1020 cm3/sec?

W = 6,59 x 101 short tons weight of earth

M = 4.092 x 1023 siugs mass of earth
go = 32.2 ft/sec?
R = 3960 miles radius of earth

CO<
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€=/

Ellipse

Directrix

Fiqg 1-1.- Conic sections, ellipse, parabola, hyperbola
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. 1+€
r (o) | + € cos©

&7
: . ; T
a) Conic sections Apegee pPerigee
re= a(r-¢&%)

/+€cos e

te——qall + €)

b) Ellipses with different eccentricrty

Fig 1-2.- Characteristics and dimensions of various conic
sections and ellipses.
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/+E COS &

2
o= 4 (/) cos”y,

P/
tan e = tan i, LO/’?’/}

/
¢ =‘c'0'?§,[£’/]

/s

/%) -1 |

whHen ¥ -o, € -

f1g 1-3- [/lustration of orbit equation
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2.1

SECTION II

SATELLITE TIME AND POSITION WITH RESPECT
TO A ROTATING EARTH SURFACE

Introdustion.

It is Interesting and often necessary to know the
satellite time of passage and its position over a rotat-
ing earth surface., The object of this Section is to use
the orbit equations presented in the preceding Sections
and develop time and position relationships that are a
function of the angle in the orbit plane. A brief dis-
cussion of some general features of satellite orbits will

also be presented.,

Time Relationship

According to the laws of planetary motion, the three
initial or launch conditions Vl, ry, and ﬁVl, determine
the future path of the satellite neglecting drag or
accelerating forces acting parallel to its path. From the
preceding Sections we know that the satellite willvmove
in an elliptic path

r= a(-e?

/] + 6 CosS €& (2.1-1)
or
r= L -
/+ € Cos & (2.1-2)

We also know that its motion will obey the second of

Kepler'sILaws'thét the radius vector sweeps out equal

93<
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2

areas in equal increments of time or

réde _

dt

(2. 1'3)

The value of K 1s simply twice the area of any tri-

angle described by the radius vector r in a time dt

and sweeping through an angle de.

Transposing and integrating (2.1-3) we obtain

or

see that

Kt =/;2de

¢ =-,-’(-f‘;"de

Substituting equation (2.1-2) into equation (2,1=hb) we

-_E.f
(/+ecose)

(2.1=1a)

(2.1-4b)

(2.1-5)

Integrating and putting in the limits we get the expres-

sion for time from the perigee as

- IN
€S e .,

/-€2

2 ta';'( 1

—&* tan 92)
1+é&

(2.1-6)




2-3
From our previous ndtes we know that

_ __z) o g2 2
p=all-e? K/ZR (2.1-7)

So that equation (2.1-6) can be written as

L)<t L _[—€sme s 2 tant dzoz‘ﬁag %

2,Q4(/ Y| 1+€cose =2 1+
(2.1-8)
If we let
3
c=L£ (2.1-9)
2.1-9
9°2R4-
Now from our previous Sections we have the following
expressions
K= Vcost (1.14-3)
v,-g
- /
p=r Tf;) cos ¥, (1.5-16)
2 2
LR = W'r, (1.5-19)

Thus the value of C can be written in the following

forms

A

c=p (2)?
f& (241=102)

- 55<
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3
-_-._rL(_‘ﬁ_ 6053(, (2+41-10b)
LV,
% . q\2 3
RY (AN e2)®
9,)(R) (’ € ) (2.1-10c)

The period 1s simply the value of t(8) for © = 2w

so that from equations (2.1-8) and (2.1-10)

21T r ,D'%
= (I—é‘)’/‘ LgléR (2,1-11a)
o
T = 7R éz)% = (9 ) (2.1-11b)

T= 277'\/'9-‘—?_ ,/(%) (2.1-11c)

where the semi-major axis
L

a =
/-6

The previous section on "Orientation of Orbits" shows
that perigee point and the launching point are a function

of ©, as sketched on page 2=5.

36<




The angle between the perigee and the launching point
is related to the launching angle ’)’1 by

- /I
ne=t RAfmm
tan e anlt, =y

The time from the perigee to the launching point is

simply the value of t from equation (2,1-8) for o = 91.

Predicting Satellite Position

One of the objectives of the IGY satellite program is
to determine the shape of the earth and its gravitational

potential, We know that the earth is not a sphere, but

o7<
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an oblate shape. Consequently an artifical earth satel-
1ite is attracted to the earth by a net force that does

not vary exactly as the inverse square of the distence

from the earth‘é center and the force is not directed
exactly toward the center of the planet. However, for
locating manned satellites that may be in orbit for only

a few hours or for obtaining useful first approximations

of the orbit elements of unmanned satellites the assumption
that the earth is a uniform sphere should give results that
are reasonably accurate.

Two methods for obtaining the satellite position can
be used both of which produce identical relations provided
the same reference positions are used. One method utilizes
relationships existing in spherical triangles in locating
the orbital plane on the earth surface while a second method
uses an equatorial system of co-ordinates used by astro-
physical laboratories and other investigators (see refer-
ence 1, 2 and 3 for example). Since the second method re-
quires familiarization of vector products which willl be
discussed in a later section on trajectories, the position
relations using spherical triangles willbbe developed in
this section,

Reference Conditions
Before we establish the reference condition which will

enable us to orient ourselves on the projected path of the

98<




satellite, let's familiarize ourselves with how the
satellite might move around the earth and let's review
some relationshipsthat exist in any spherical triangle,

If the earth 1s taken as a sphere the plane of the
satellite orbit remains fixed in direction and the notation
shown in figure 2.1 is chosen to take advantage of this
fact. The inclination angle 1 of the orbit plane or the
maximum latitude reached and the point N at which the
satellite crosses the equator from South to North specify
the orientation of the orbital plane in space. The follow-
ing additional notations are presented for orientation in

the equatorial and orbital planes,

Egaafor/a/ plane

S3<



where

X0Y

0X

02

is the center of the earth
1s the plane of the earth's equator

is directed towards the point where the
satellite crosses the equator going North

points to the North pole

point at which the satellite crosses the
equator from South to North and is called
the ascending node

perigee location

angle NOP measured in the orbit plane from
where the satellite crosses the equator to
the perigee

vertex or maximum latitude reached by the
satellite (the point where the orbit cuts
the plane 0YZ)

angle in orbit plane between perigee and the
apex or maximum latitude reached by the
satellite (0w + 8 = 90°)

any subsequent position of the satellite
angle in orbital plane from the apex to

the subsequent position S of the satel-
1lite

angle in orbital plane measured from the
perigee (6 = (& + ©6y) (usually called the

true anomaly angle)

inclination angle of the orbit plane

66<
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To derive the relation between the latitude, longitude,

and the angle ©y We use the following spherical tri-

angle relations

Q

Where A, B, and C are three angles and a, b, and ¢ are
the arc lengths of the opposite sides. From the sine

law we know that

sin A - sinB _ sin C
sin a sin b sin ¢

and from the cosine laws

cos a = cos b cos ¢ + sin b sin ¢ cos A

cos C =«cos A cos B + sin A sin B cos ¢

If we know two sides and one angle or two angles and one
side we can solve for the unknown side or angle, The

following additional notatlions are presented for defining

the various additional elements
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where the elements not defined previously are

q/-

AApy

AAvs

A7\Ns

apex or vertex angle = 90°

angle measured from the North to satel-
lite position at perigee

difference in longitude from perigee to
vertex AApy = Ap - \y

differencein longitude from vertex to

difference in longitude from nodal point
N and the satellite AAyNs = )\N - A S

latitude measured North or South of the
equator

colatitude = (90 - L)

longitude measured East or West of the
prime meridian at Greenwich

Subscripts refer to particular position in
orbit plane.,

62<
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From the sine law

sin A sin Lﬂ _ sin ‘0
sin (90 - Lp) ~ 5im (90 - L) sin (90 - 1)
Since the apex or vertex angle A = 90°
and sin (90 - L) = ¢co0s L

then

= cos 1
[ sin 5& cos 1o LP] (2.2-1)

From the cosline law for two sides and one angle

cos (90 - LP) = cos (90 - 1) cos K?
+ sin (90 - 1) sin 8 cos 90°

or sin LP = sin i cosA?
sin Lp

and cos B = —— (2.2=2)
sin i

From the cosline law for two angles and one side

Cos A )tpv = — Cos 90°cos ¥ + Sin 90°SIn Y cos(3

/Ca.s A/\P’ = S/IN ¢ cos (57

(20 2"3)

63<
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2.3 Position from Nodal Point
For any other latitude and longitude location from
the ascending node position N on the ecuator the follow-
ing quantities for a non-rotating earth are derived:

Latitudew

From the cosline law

Cos (90-Lg)= cos (90-L)cos e,
or

Skl = SINL €058,

SIN Lg
LYV A

Cos GV =

(203'1)

now from our previous notations we know that

w+@Bd= 90°

and

6,= e-3

# 1. Latitude on the earth surface 1s directly related to
declination which is reckoned in degrees North and

South of the celestial equator.

64<
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9,= (w+e)-90

then
€%/==
SO
cos 8,
and SV 8,

_[sa - (w+a):]

"

SIN(Ww+6)

-cos(w+6)

(2.3-2)

(2-3'3)

Substituting (2.3-2) into (2.3-1) we get the latitude of

the satellite,

/Zzu L5=

SIM L SIN (w+6) /

3

353
Longitude

From the sine law

/

- .s,&ldalams
S/M (90-L) SIN &,
we get that
SIAIG;V
nSl*/‘Slxv3:=
cos Lg

# 2,

(2-3-h)

(203'5)

Longitude on the earth surface is related to the

right ascension, the hour angle and sidereal time

in the equatorial system of coordinates,

65<
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since
o
A/\NS'—’ 90 +A4A)
or AAVS = —[w“AhﬂsJ
then SINAAVS'__‘ -COSAANS (203'6)

substituting (2.3-6) and (2.3-3) into (2.3-5) we get

cos (w+6)
cos Lg (243=7)

Cos A=

Equation (2.3=7) cen be put into a more convenient form

by writing it as

SIUAANs = €05 (w+3) tan Ls
tan Ahys SIN LS (2.3-74)

It can very easily be shown by dotting a unit vector along
the normal to the orbital plane into a unit vector along a
line drawn from the center of the earth to the satellite

position that

tan Ls
tan i (2.3-8)

SN AN, =
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Substituting (2.3-8) and (2.3=-4) into (2.3-7a) we get

tan Ls = cos(w+e) —LANLs

tana),, tani SIN i SIN (w+ &)

= SN taniwre
tan ad,s = Ga-s taN@*e)

So the longitude of the satelllte for a non-rotating

earth 1s given by

A, = tcm‘Zcos i tan(w+6?] / (

2. 3-9)

Since only the longitude position of the satellite 1is
affected by the earth's rotation the final expression

for the longitude position from the nodal point is

Z A/)N = tan-ZEas { tan(wf-e)] * w, ¢ (o) /
(

2.3-10)

where
We - rotational velocity of the earth
equal to 15°/hour or 0.25°/min
t(0) - time from perigee given by equation
(2.1-8)
The sign of the met(O) term 1s negative for satel=-

lites launched East or with the earth's rotation and positive
for launchings to the West. Since equations (2.3-li) and

(2¢3~10) relate the latitude and longitude as a function

67<
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of the angle © in the orbit plane and time is a
function of © from equation (2.1-8) then equations
(2.3=44) and (2.3-10) are obviocusly also a function of
time. Once the longitude position of the nodal point

N 1is established with reference to Greenwich then a plot
of Lg(t) as the ordinate and N\(t) as the abcissa 1s
useful in locating the satellite on a Mercator projection.

Each successive orbit is displaced in longitude by

where the period 1 1s calculated from equation (2.1-11).
A few words about the earth's rotational velocity be-
fore some typical results are presented. We know that the

earth's rotational velocity at the eguator is

v = 2R 1037.6 mi/hr

equator 2L

The rotational velocity at any latitude L above or
below the equator for a glven angle HU measured from

the North is

VL = 1037.6 cos L sin L/)

Then for & given latitude you gain the most benefit from
the earth's rotation by launching due East ( y/ = 90°)

b
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2.4 Typical results

Typical results are presented to illustrate the

application of the above developed procedure, The ex-

ments:

1.

| ample presented is for the following specified require-

The satellite height, h1 above the launching
point is to be 150 miles. The launching velocity,
Vl should be great enough to tolerate an initial
flight path angle %/ 1 of < 3° and a minimum
radius over the launching radius rmin/rl ratio
of 0.586.

The launching angle should be such that the satel=-
lite comes directly over the launch position at
Cape Canaveral, Florida on the second orbit

around the earth.,

The orbit characteristics for the above requirements using

equations (1.5-17) from the previous Section are tabulated

below
Orbit
Launching radius r, = 4113 miles
Launching velocity ratio, %% = 1,05

Initial flight path angle, ¥, =0

Angle between perigee and launching point, €7 =0

‘ Semi-latus rectum, p = },535 miles
| . Eccentricity, e = 00,1025

65<
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Perigee distance, Ty = 4,113 miles (hp = 150 miles)
Apogee distance, ry = 5,053 miles (ha = 1,090 miles)

Period T = 105 minutes

14S34e 6 miles
1 + 0,1025 cos ©

Radius in elliptic orbit,

Because 0/1 and ©, were zero the perigee point
occurred over the launching point and consequently the
launching height was also the height at the perigee.

We now solve for the difference in longitude between
the perigee and the vertex point knowing that due to the
earth's rotation

AL) = —COQ'T'
= -0.25x%x /085
AN =-26°15'

/
r-) I4
l?.= 17532&52?26

) -26°15’
: A= dp=-80%32.4"
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then AApy =13° 7.5

Knowing Ly and A‘NPV we solve equations (2.2-1),
(2.2~2) and (2.2-3) for L,U and obtain

gu = 83° 39!

From the same three equations then the inclination of the

orbit plane or the maximum latitude reached 1s

1 =1L, = 29° 6!

v

and the angle in the orblt plane between the perigee and

the vertex 1is

& =11° 31,5
Since w+48 =90°
then w = 78° 28,5

Knowing the inclination angle 1 and the angle ® in
the orbit plane from where the satellite crosses the
equator to the perigee the declination or the latitude of

the satellite from equation (2.3-44) was simply

L (¢) = 51u"[o.46634 SIN (78°28.5¢ 627

and the incremental longitude from equation (2.3-10) is
-1
AN ()= tan [0.67377 tan (78°26.5 +68)]-0.25¢ (o)

Vi<
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when t=o

4),4(0) = A yp = S0-22p,
or o

4N, (o) = 76°52.5'
then

zﬁk,(b) = ;%F>_-‘1Auho

=~80°32.0'-76°52.5'
o ’
/)/u (0) = —=/57 25./ \est of Greenwich

so the final expression for the longitude or the right
ascession of the satellite as measured from Greenwich
was
A (t) = D, +adyg (B)
or
/\s&) = ~157°%25.1"'+ tan'Zb.aZa?? tan (73‘2&5'4-9)]
~0.254(s)

where the time from perigee from equation (2.1-8) was

-l
.6(9) = 16.0/77 9./1025 SIN & + 2.0106 ta” (0.”22 {'dﬂ %)
/140.10285 CosS &

The Mercator projection of the initial orbit for the
above example is plotted in figure 2.2. The surface of
the earth covered did not include Europe or Asia, The
only land areas crossed other than parts of the United

States and Mexico included parts of Africa and Australia.

ve<
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A plot of the distance of the satellite from the center
of the earth r as a function of the latitude L 1is
shown in figure 2,3. The height on the southern pessage :

. |
being greater than the northern passage for the same ‘:ﬁl;:“
t

latitude. Changes in launch angle qyl and S‘) have; o 'i

been examined and the results indicate that changee in

7/1 influence the eccentricity € and the longitude

A\ , while changes in QL/ effect the latitude L.
Neither %, or (,U effect the period T.

Perturbation of a Satellite,

Without disturbing forces the orbital elements would
not vary with time and the satellite would travel in a-
elliptical orbit described by the elements, in~reafity
the contlinued action of the disturbing forces causes the
elements or characteristics’of the orbit to change with
time, These forces arise because as mentioned previously
the net force that attracts the satellite to the earth does
not vary exactly as the inverse square of the distance from
the earth's center and is not directed exactly toward the
earth's center, The other main disturbing force to the
oaslic elliptic orbit results from the atmosphere, It should
be of interest, therefore, to mention yhat some of the dis-
turbing force effects are on the elements appearing in our
derived expressions for time and position.

Because of gravity's more powerful effect at the

73<
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earth's bulging equator the satellite's orbit precesses
or pivots, like a child's top slowing down. The re-
sultant effect does not decrease the inclination angle
of the orbital plane but if one revolution about a non-
rotating earth carries the satellite over the equator

at N (figure 2.1) the next circuit will cross at some
point west of point N. The rate of regression of the
line of nodes according to reference L is a function of
the cosine of inclination angle and is, therefore, the
greatest for an equatorial orbit, For example, for a
mean satellite radius of l;,500 miles the rate of regression
1s calculsted to be -6.5ldeg/day for an eguatorial orbit
and -li.61 deg/day for an orbit inclined L5° from the
equator.

Another effect of the earth's oblateness is to rotate
the orbital plane about the earth's axis in the direction
opposite to the motion of the satellite, This rotation
in degrees/day for a given height is, according to refer-
ence 1, a function of the cosine of the inclination angle
1 and is, therefore, the greatest for an equatorial orbit.
Rate of rotation of Sputnik II orbital plane which was
inclined 65° to the NE was between 2,69 and 2.88 deg/day.

It is also found that the major axis of the ellipse
rotates in the orbital plane by so many degrees per day for
a given height. This rotation is in the same direction as

the satellite motion if the inclination angle i1s less than

7d<
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63.11° and in the opposite direction if 1 1s greater
than 63.4. For example, for a 200 nautical mile orbital
altitude the major axis rotates about 16 deg/day in the
same direction as the satellite for a near-equatorial
orbit and at about l} deg/day in the opposite direction
for a polar orbit., Both of the above mentioned disturb-
ances cause the perigee point P to move along the orbit
so that w the angle from where the satellite crosses
the equator to the perigee point is not constant. Con-
sequently the satellite has different periods than would
be predicted by theory. Also the height of the satellite
as it crosses any latitude golng North say, may be differ-
ent on successive days.

The main effect of the atmosphere is to reduce the
length of the major axis making the orbit more nearly
circulare This 1s because most of the retardation due to
drag occurs near perigee; consequently there is a loss of
altitude at the subsequent apogee. The reduction in the
length of the major axls shortens the orbital period by
so many seconds per day and it is possible to estimate
the air density and the life-time of a satellite from the

rate 6f decrease of the period.
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SECTION III
THE MOTION OF A SPACE VEHICIE WITHIN THE EARTH-MOON SYSTEM

3.0 The Restricted Three-Body Problem

So far we have been dealing with the motion of a vehicle under the
attraction of one large body (the Earth). If, however, the vehicle is to
coerete at large distances from the Earth (in the vicinity of the Moon,
for evemple) then the orbit equations which have been developed are no
lenger valid and we must take into account the forces due to the second
largs body (the Moon). If the mass of the space vehicle was compareble
to the messes of the Moon and Earth, we would have to consider the
clessical Three-Body Problem. In this section we will deal with the
-restricted Three-Bcdy Problem in which the mass of one of the bodies
(the space vehicle) is infinitesimal in comparison with the other two
badies (the Earth and the Moon). The Three-Body Problem is one of the
c'assical problems of celestial mechanics and the names of Lagrange (1772),
Jocobi (1843), Hill (1878), and Poincare are closely associated with the
rrcblem. In this section the development of the equations of motion
follows that of Moulton (1902) in reference 3-1. The basic development
in refercnce 3-1, however, follows that of Hill (1878) in reference 3-2.
The trajectories shown and many of the results given in this section were
taken from results of studies by the RAND Corporation (Buchheim reference
3-3) and by the Russians (Yegorov, referznce 3-4). (It should be noted
that both references 3-3 and 3-4 made wide use of the bock An Introduction

tc Celestial Meachsniecs by F. R, Meoulton; reference 3-1,)



3=2

3,1 Equationz of Metion (Tnertial Refersnce Axes)
The system of ax2s used is the inertial axes system shown in Figure 3-1
and 3-2 where the origin is taken at the center of macs of the Earth-Mcon
vsystem, and the plane ~f rotation of the moon about the Earth is in the

Xqs ¥, Dlene.

o 90

m
(K", ‘7.)2.) fa

(xo 3, ‘}01)0)

—_ .

()‘o, 0,9
9o

[
There are two radiel rravitationclforces acting on the vohicle

r, = Mmay = - '
1 r.2
! z,1-1
Gm Wb
Fr2 = mep = - 2'
ra
where
ri? = (x, - xol)2 + (vq - yol)? + 247
2,.1=2
2 . ( + )2 2 2 ’
vp = (g = %o, ) + (¥g = Vo)™ * %




The forcesdue to the earth in the x,, v,, and 2z, directions arae:

Summing the forces due to the

Frl (Ko - Xo;)

|

e
"

- P, (Yo - Ycl)

F =
1 1 r
2
F = Fr )
Z- 17

directions we have:

or

(X0 = %o,) (%o - Xoo
mXg = = Gm My - Gm Mp
rl r25
(Yo - ¥oq) (yo - yoo)
m Yo = - Gm My L oM . 2
rl r2 -
z z
o o
= « Gm My = - Gm My ~——
o] 1 r]} 2 r23
" (xg = X0y (xg = Xo,)
Xo == G M -G Mp ————2_
rl r23
" (yo - Yo, (¥o - Yoo)
Yo= =GM —m—1 . My ————2
r13 P25
" zo Zo
Zg = - G Ml —_— - G M2 —_—

3.1-%2

“0

3.1k

3.1-5
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3,2 Equations of Motion (Rotating Axes).
Now, let us assume that the earth and the moon revolve in circles
about their common center of mass. (At least for the time it would take
a vehicle to complete an orbit to the moon.) Actually, the eccentricity

is 0.0549 - not quite circular.

-

-~

R

ct
ct
vy

e motion be referred to a new system of axes rotating with the
uniform angular velocity w, - the mean angular velocity of the earth-moon
system. (See Figure 3.2.) The coordinates in the new system are defined

by the following transformations:

T
xow cos wt - sin wt O( Ix
|
]
iYob- = lsin wt cos wt 0 vy 3.2=1
! ! {
i : |
z . 0 0 lilz
| °\ L 1)
o] 1is o
Xo | rcos wt - sin wt O (X = ay |
o v 5
yoL = sinwt coswt O]y + mx1L 3.2=2
. | 5 |
zoJ 0 0 lJ. ;2 i
o L J
" ) ] " . 1
Xo cos wt - sin wt O X = 20y - aPx
.ﬂ;o = §sinwt cos wt 0' <y + 2ux - wly 3.2=3
" i ‘ n
2o ; 0] 0O 1: 2
L. d

Other useful transformations are given in table 3-1.
Substituting the velues from equations (3.2-1), (3.2-2), and (3.2-3)

into equations (%.1-5) we get:
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Substituting the values for A, B, C, and D we have:

" (x = x1) (x - x2)
X = 20f - a2x = = G M - —_
r13 r23
" (y = vy) (y = vp)
Y +ouk - aPy = -G My . 3.2-5
r13 r23
and 22 =G M —— -G M —
ry’ rpd

If the position of the x rotating axis is teken through the earth-moon

axis then y1 =0 and yp = O so that

" . (x - (x - X )
X = 20y = w?x -G M xy) -G M 2
ry3 rod
y + 20k = oy - G M L= - G M Lo 3.2-6
r15 I‘23

2 = =G My _53 -G 2
r 1 r23

Note that
2

r12 = (Xo - x01)2 + (yo - y01)2 + 20
Then from the transformation equations (3.2-1), (3.2-2), and(3.2-3):

rl2 . (x - %)%+ (y - y1)2 + 22

which is independent of *.
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Thus these equations have the important property that they do not
involve explicitly the independent variable t because the coordinates of
the finite bodies have become constants because of the manner in which the
axes are rotated.

The general problem of determining the motion of a small vehicle is of
the sixth order; if if moves in the plane of the motion of the finite bodies,
it becomes fourth order.

The terms 2uy and 2ux are the so-called Coriolis accelerations
and «°x and m?y are centrifugal terms.

In the practical case it is convenient to use a units system that does
not require either very large or very small numbers. Therefore, the units
will be changed to:

Unit of time - 1 day
unit of distance - 1 lunar unit,

distance from earth
to moon

In this system: (Ref. 3-3)
® = 0.2299708} rad/&ay

D

1 lunar unit
GM = 0.052886587 (lunar unit)> (day)=2
R = 0.01655926 lunar units

X1 = - 0.012128563 lunar units = = p
Xp = 0.90T071LL lwnar units = 1 -

M = Mass of earth plus mass of moon
M} = Mass of earth

Mo = Mass of moon

&7<
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M
Letting u = 1% = ozlus (1-4) =

=)

Fquations (3.2-6) then becom~ :

" . (x - X X - X
X = 2uf = afx - G M (L -y v | GMu ( 2)

r3 rg3
y+25_m'(=w?'y..GM(l_u)_}L.-GMp—y— 3.2-7

z=2-GM(1L-p) 2 -GMu 2
r15 r23

where

ri2=(x - x1)2 + y2 + z2
rp2 = (x - x)2 + y2 + 22

These are the equaticns with which trajectories of moon rockets can be

computed.
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2.3 Jaccbi's Integral

The only known solution of the above equation is the Jacobi integral.

If
WeloP(x@+y?) oo =p) ,opb 3,31
2 ™ 1‘2

then the equeticns of motion (3.2-6) can be written as

X - 2uy = oW
ox
Y + 20% = oM 3,3-2
oy
no_ oW
2 = I
dz
For axample
W1 5 (1 - 2
l=—'x)?(2x) JGHi - (x - x1) -GM—pl——e—(x-xa)
Ix 2 r2 2n - ro2 2rp
(x - x X - X
=a>2x-GM(1-p)——l)-GMp(——3-)-
r13 r23

Multiplying equations (3.%-2) by 2x, 2&, end 2z respectively we have:

A1}

oxx - baxy = 2% =t

1"
2yy + buky = 2y — 2,7.3

P

2+ on oW

@
{2
A
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adding thesc egquations we obtain:

1n 1" "
2%x + 2y§ + 222 = 2 iﬂ + 2y o + 27 o

<y 3 -h-
Ax ¥ dy dz 3.3

This equation can be integrated. For example

and
'ﬂdt-_-ﬁd
Ix X
d1=2w-dx+§—7dy+5&d,_
Ix Qy dz
(i)2+(5r)2+(2)2-2f<0—”dx+"—"-’dy+9-‘fdz\+c-o 3.3-5
ox ay az J
or

VvV =24d-C 3.3-6

Substituting the value of W from equation (3.3-1) into equation (3.3-0)

we have:

v2=(.u2(x2+y2)+2GML’=-'—B-l+2GM;%-c 3,3.7
ry

This 1s the only known integral for the equations of motion. In general,
solutions of the equations of motion (2quation (3.2-7)) must be obtained

by step by step integraticn.

SG<
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3.4 Surfaces of Zero Relative Vzlority
Jac~pi's Integral (equation (3.3-7)) will give us a great deal of
information sbout the motion in an earth-moon system. When the constant
of integration has been determined by the initial conditions, equation (3.3-7)
determines the velocity in the rotating plane at all points in space. It
13 evident that V2 must be positive for real motion in the earth-moon

system. Thus the boundaries for possible motion are given for V = 0 as:

T T S VL S I 1) RPN T
ry ro

rl2 = (x - xl)2 + y2 + 22 3 41
r22 = (x - x2)2 +y2 + 22

Curves of zero relative velocity in the XY plene are shown in
Figure 3-3, (These curves are for illustration only and are not to scale.
Curves of zero relative velocity in the yz and yz planes are shown in
Figures 3-4 and 3-5.) The surfaces of zero relative velocity, for large
values of C, may be roughly described as consisting of a closed fold about
spherical in form about each of the large bodies, and of curtains hanging
from an asymptotic cylinder symmetrically with respect to the XY plane.
For smaller values of C the folds of the two bodies expand until they
reach each other, and then open up forming one surface surrounding both
earth end moon. For still smaller values of C the folds and curtains
meet and open up. The motion is real within the folds or outside of the

curtsains,

D

}1&'1
A
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In Figure 3-3 the values of C are numbered such that Cy > Cpo > C3 eee o
t'er initial conditions of C = C1  the body cen move either in a closed region
about the earth or in a closed region about the moon -- it cannot travel
from the eerth to the moon. Earth Satellites and ballistic miésiles will
be in this class.

(It cen also be shown that if the Sun and Earth are considered the
finite bodies and the moon the infinitesimal body, the constant C,
determined by the motion of the moon, is so large that fold around the
earth is closed with the moon within it. Therefore, the moon cannot recede
indefinitely from the earth within the assumptions of the method.)

For C = C3, the body can move within the closed contour around the
earth and moon so that travel to the moon is now possible. C = Co represents
the limiting case separating regions in which 1t is not possible. : .

For C = Cs, the body can escape the earth-moon system since the region
is open behind the moon. C = Cy is the limiting case at which escape
becomes possible.

In eddition to these contours, within which motion is possible, there
are, for the seme C values, outer boundaries beyond which motion is
possible., For exarple, a body (infinitesimal) from outer space camot
approach any closer than these boundaries (curtains).

At C = Cy the inner and outer branches of the surfaces coalesce and
for C<C, & vehicle cen enter the earth-moon system.

As C decreases from Cj <the opening behind the moon widens. When
C = Cg¢ the contour also begins to open behind the earth and when C = 07

only the interiors of the kidney-shaped regions can not have real motion.




® w

As C decreases further the aree precluding motion decreases until
finally st C = Cy the regions become a point. These points make
equilateral triangles with the earth and the moon. When C < C§ no
region in the x-y plane is excluded.

The surfaces of zerc relative velocity may also be described as the
envelopes of all possible orbits for given initial conditions. In Figure 3-6
the zero relative velocity contours corresponding to Cp, Ch’ Cb, and C6
are shown drewn to scale for the earth-moon system. In Figure 3-7 are
shown the contours corresponding to & value of C similar to C; of
Figure 3~3, and in Figure 3-8 the contour about the earth is shown for
a value of C corresponding to that of an earth satellite. For the earth-
meon system the contours are almost circles in the x-y plane for values

. of C numerically greater then C,, (i.e. C;) since the mass of the

mocn is only 1/81.45 that of the earth.

(o
A
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3.5 Points of Coal=srence
From Figure 3-3 cnd 3-6 it can be scen that thers ere thrce points on
the x axis callad points of ccalescence at which double solutions are
~b*sined 2nd the resions of possible motion are enlarged. These points

serresvond to Cp, Cy, and Cg and are indicated below:

E
M
Ce ( \ Ca o Ce
xce \‘j Xce Xem
Emation (3.3-7) in the xy plane is .
F(x,y)=w2(x2+y2)+2GM-Q;El+2GML-c=o 2,5-1
ry r2
Th~ ~onditions for double points arc:
) - (x - xp)
_-3-'--—-21.«>2x-2(}M(1-p)-(->—(——x—1—)--2(}Mu CL
Aax r13 r23
3, 5«2
OF _ oy -26M(1-p) L -20MpL-=0
au' r13 I‘23

The donble points on the x axis and the straight line solutions to the

problem are given by the conditions:

s GM(1-p) (x=-x) GMu (x - x2)

wfx - T - X1)2]372 - [(x - x2)2]572 =0 3.5=3 .

S4<
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This equation is also the first equation of (3.2-7) with

1"
X=y=o0

Moulton (ref 3-1) has solved for the roots of this equation and they are:

1/ .2/ \3/
oy = (4 -1 -3 (67 s
R L 1 AT

2
-L - 5
race 2 12 "l 23 (12) p. + ee0scse

It can also be shown that the double points not on the x axis are

ry =1, rp = 1, such that the points form equilateral triangles with the
finite bodies regardless of their masses. These are the points labeled

C8 1in Figures 3-3 and 3-6. (Note that the values of r are in lunar units.)

It can also be shown that the particular solutions on the x axis are
unstable - ie., if a small body were displaced a very little from the point
of solution 1t would, in general, deport to a comparatively great distance.
The equilateral triangle solutions, on the other hand, are stable; - a body
displaced a little would oscillaté about the point of solution.

It is of interest to note that the equilateral triangle solutions are
known to exist in the Solar system. These are the well known Trojan
Asteroids between the Sun ani the planet Jupiter. There are twelve known
asteroids in the Trojan Group, seven of which precede Jupiter in its
revolution about the Sun and five of which follow. These asteroids have
an average diameter of about 80 miles and oscillate near the equilateral

triangle point.
S5<
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The reel roots in terms of distances along the x axis are:
Xoy = lwep- r2ci

3.5-5
X, =1+ r2cm

»
]

ce ® LW -To

Since pu = — = 1
M 82.45
Xey = 0.83702 1lunar units
T4 = 0.84915 1lunar units
x = 1,15560 lunar units

lem ™ 1.16773 lunar units

Xee = - 1,00505 lunar units

Tlee ™ = 0.99292 1lunar units

Substituting these values in Jacobi's integral (equation 3,3-7)

we can now solve for 02’ Ch’ and C6' These values are:

Cp = 0.16861 (lunar units/day)®
Cy = 0.16776

C, = 0.159%0

6
or

JCo ~ 6000 ft/sec
JCu ~ 5986 ft/sec

JEE'~ 5832 ft/sec
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It might be interesting tc ccmpare the value of Xoi» the point between the
2arth and the moon at which a small body would remain relatively at rest,
with the distance of the point of equdl attraction between the earth and
the moon based on the static equations.

Equating the two fcracs of attraction we have:

GMym  GMpom
2
<r_l.\ = -b-,l-l = bl'5
ro] M
ry +rp=0D
ry ) / Ml/N12
D 1+ J My /Mp
r
1
— Oo
5 9

whereas e = 0.849. The difference, of course, is caused by the
inclusion of the centrifugal force term w 2x in the case of the body

rotating with the earth-moon system,
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3.6 Velocities at the Surface of the Farth Corresponding
to Cp, €, Cey and Cy
The significance of these values of Cyy Cy, and Ce, can be seen
more readily if we calculate the velocity of a vehicle near the earth that
corresponds to values of C egqual to Cp, Cy, end Cq: We shall
arbitrarily choose a position 4,300 mlles from the center of the earth

ad jecent to the moon. At this position the position of the vehicle is:

X3 = 0.0058575 lunar units
Ys = 0
Zs = 0

From equaticn (%.3-7) then:

C = C2; Vo,i = 2.375333 lunar units/day
= 34,703.8 ft/sec

C = Cy; V), ,m = 2.375513 lunar units/day
= 3h,706.4 ft/sec

C = Cgs Vg,e = 2.377292 lunar units/day

= 3L,732.k4 ft/sec

The value of Cy from the equilateral triangle solution is:
Cy = 0.15003 (lunar units/day)?

The velocity Vy at the surface of the earth adjacent to the moon is:
Vg = 2.377560 lunar units/day

= %4,736.3 Tt /sec
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Thus the minimum relative velocity needed to reach the moon from the

reference position is 34,703.8 ft/sec and the minimum velocity needed

to escape the earth-moon system is 34,706.4 ft/sec; a difference of

only 2.6 ft/sec indicating the sensitivity of trajectories on initial

conditions. 1In addition, with a velocity greater then 34,736 ft/sec

the vehicle could theoretically reach any point in the earth-moon system.
Since Vy,m is less than Vg,e it is easier to escape from the

earth-moon system by projecting toward the moon than it is by projecting

awey from the moon.

(o
L
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3,7 Conversion of Relative Velocity to Velocity
in the Earth Inertial System
Tt should be remembered that the velociti-c w: have been talking

about are relative velocities in a rotating axes system and are defined

as
v = (024 (124 (2)° 3.7-1
whereas
Vel = (xe)2 + (ye)° + (ze)? 3,72

The velocities relative to the earth are related to the velocities in the

rotating axes system by the following transformation:

Eie\ cos ot - sinwt O |[(x - ay)

'\i}'er sin ot cos wt O ﬂ&-}-a)(x-xl)

v

3.7=3

Lzej 0 o o0 1
J4{ J

Therefore,

Ve = (x - ay)? + [y +o (x - xl)]2 + (2)2

. . . . 3‘7-l+
= x2 - 2uy% + 0fy® + ¥2 + 20(x - x1) ¥ + ?(x - xl)2 + 22

Ve2

V2 + of [y2+(x-xl)2] + 20 [(x-xl) y-)'cy]

Writing this in terms of the polar coordinates of earth system (rl,r) we

have in the (xe,ye) Pplane:

r12 = %2 + ye2 = (x - x1)2 + ¥ 3.7-5

o>
oy
Q

A




3-21

Tnen

ve? = v@ 4 r12w2 + 20 L}(x - x1) - kﬂ

In the Fimi-2 the angle © between the velocity vector V ani the
ncrmal to the radius ry from the earth is

®=090 +a - q

and x = V cos o
vy = V sin o
Also

(y cos 4 =% sinq) = - Vcos @
Therefore

ve® = Vv - 2wr) cos @ V + rl2w2

The maximum value of Ve will occur, then when cos @ = = 1 and the

minimum value will oc~ur when cos ©® = 41 or

AN
Lid<

3.7-6

3.7-7

3.T7=8
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(V=wry) <Ve < (Vv + ary) 3.7-9
Now -
® = 0.22997
ry = 0.017986
wry = 0.00412%6
Taerefore,
2.371197 < Vep < 2.379469 1lu/dey
zLo51 < Vep < 3772 ft/sec
2.371377 < Ve, < 2.379649 1lu/day
3esk < Ve < TS ft/sec
Thus the minimum velocity relative to the earth (Ve) required to send .

a vehicle to the moon is

Ve = 34651 ft/sec
The minimum velocity needed to escape the earth-moon system is
Ve = 34654 ft/sec

The escepe velocity from the reference vositionbased on the two body

equations is
2

R
S

VEe = 2.41029198 lu/day

or Vg = 35,21k ft/sec
e

Thus the two-body velocity is 560 ft/sec more than the three-body velocity.

102<
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: . 3,8 Effects of Neglected Factors

Mean Distance from Moon
. The distance to the moon used in reference 3-3 of 239,074 miles
differs from the mean distance 238,857 miles determined by observation.

The distance used was derived in reference 3-3 as follows:

T = 2x 52 3.8-1
VGM |

The mean angulsr velocity is given by

The period is given by

- (). o
But
. GMe = g, R2 = GM (1 - )

- “Also a = D, the mean distance to the moon

) » D3 = QM
@°
R 3.8-3
(1-p) @

Using appropriate values of Gg, R, u, and @ the distance D = 239,0714».
The difference of 217 miles is due partly to the action of the sun on the
moon and partly due to neglecting the eccentricity of the moon's orbit.
Some- factors neglected in the Three Body Problem are:
1. The gravitational field of the Sun.

2. Eccentricity of the meoon's orbit.

. 3. Inclination of orbit of moon.

103<
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L. Oblateness of the earth.

5. Pressure of Solsr radiation.

Buchheim (ref. 3-3) has investigated these effects and his results
are listed below. The results are shown as a correcticn AV to the

initial velocity because of the effects of these assumptions.

FACTOR AV ft/sec Percent V
1. Gravitational field of Sun 10 .03
2., Eccentricity of moon's orbit ks .13
3, In~lination of orbit of moon 20 .06
4. Oblateness of earth 20 .06
5. Pressure of Solar radiation Ok ——

Thus you can see that the effects are small but probably should be

included as corrections to any moon orbit calculations.
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3.9 Trajectories Near Minimum Velocities
In Section 3.6 and 2.7 the relative velocities corresponding to the
points of coalescence (Cp, C), Cg, and Cg) were determined for a reference
position 4300 miles from the center of the Earth tcward'the Moon. In
reference 3-4 caiculations of trajectories were made (three-body equations)
using the minimum velocity corresponding to Co, but for a reference position

200 kilometers above the surface of the Earth, (reference radius 4OBL miles)

as indicated below:

E <;> o -OM

200 Kim.
v

The corresponding minimum relative velocities are indicated below:

ry = 4300 mi. ri = 4LOB4 mi,
ft/sec ft/sec  km/sec
v, 34703.8 35572.2  10.84890
/N 34706.4 355T4.86  10.84968
/S 34732.4 35600.0  10.85738
Vg 34736.3 35603.8  10.85854

For the initial calculations, the initial velocity corresponding to

Co (Vo) was directed perpendicular to the initial geocentric (Earth)

105<



3-26

rodius and in the direction of the Moons rotation. From equation (3.7-8)
it can be seen that this orientation will give the maximum value of the
initial velocity relative to the Earth (Ve). The results of these
calculations are shown in Figure 3-9 from reference 344, (Note: This
figure and meny of the figures to follow are taken from reference 3-k
and distances are given in kilometers and velocities in kilometers per
second.)

In Figure 3-9 are shown the first five orbital revolutions plotted
in the x y rotating axes system. Also shown are the zero relative
velocity boundaries corresponding to Cp. It can be seen that the vehicle
does not reach the boundary in five orbital revolutions. The time elapsed
during these five revolutions is about 29 days. The same orbits are
shown in translating Earth axes (xe, ye) 1in Figure 3-10. Shown are the
first and fifth orbital revolutions. It can be seen that the increase in
the apogee is noticeable but small, and the orbits appear to be very close
to two-body ellipses. L% has been estimated that about 200 orbital
revolutions wouid be ne essary for a vehicle to reach the boundary Co.
(This would tnke aboui 3 years.)

Calculations were also made of the first orbital revolution when the
initial launch angle was changed from 7 = 0° +to y = 180°, Trajectories

are shown in Figure 3-11 for the four cases indicated below.

£ Ly
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From Figure 3-11 it can be noted that the initial apogee is greatest
when ¥ = 0° or when the geocentric velocity Ve 1s greatest (qquation ( 3.7-5))
since VeI > veII 11T > veIV'

In examining Figures 3-9 and 3-11 it appears that.the Co boundary

A

might be approached more closely if the vehicle were launched behind the
Earth > A< 90°, so that it might come closer to the Moon on the first

orbital revolution:

= "

In reference 3-4 calculations were also made using values of the
initial velocity corresponding to Cp, Cg, and Cg. Even when the initial
velocities corresponded to the velocity for which all points in the
Earth-Moon system could be reached (Cg) the trajectories did not reach
even the boundary Cp on the first orbital revolution. Therefore it is
apparent that these minimum velocities are not adequate for practical

considerations.

1577<
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3,10 Use of Two-Body Ellipses to Approximate Lunar Orbits
Since the trajectories of Figure 3-10 are almost ellipses centered at the
Earth (geocentric) the trajectory of the first orbital revolution might be

approximated by neglecting the effect of the Moon.

Ye

Le

If the initial radius, initial velocity, and initial launch elevation
angle are given (ri, Vi, 71) , and the initial velocity is equal to or
greater than the velocity necessary to reach the Moon the eccentricity e
and the orientation angle 6, can be computed from the equations of
Section I.

The angle 6, 1is given by

cos 8p = 2 (fz - 1) 3.10-1

108<
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where 7y, 1s the distance from the Earth to the Moon (7, = D) and p=r
p =1 (V1/Vg)? cos® y; (SECTION I) From the preceeding sketch the angle
A between the original Earth-Moon axis and the principal axis of the orbit

is:

A=+ w[t(eg) - t(el)] - 02 3,10-2

where t(8) 1is the time to reach the angle © measured from the perigee.
(See SECTION I)

The minimum condition for lunar impact is for rp = rg = D. For this

case:
82 = 180°
t(e2) = T/2
A=o ['r/a - t(el)]
D+r
8= — P
Vv2a2g R |L .1 3.10-3
p o Ty D +rp

(wherc the subscripts a and p refer to apogee and perigee respectively.)

o eI Llewe a0 LPAA 2 __ avn
C LadlLud L 4OVV LILLACS UL

="

launch would be

Vp = 34902 ft/sec
whereas the minimum velocity to reach the Moon corresponding to Cp is

(¢ = 180°, see equation 3.7-8)

Ve, = 34772 ft/sec

1GS<
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The escape velocity is

Vg = 3521k ft/sec

Thus the velocity obtained from the two body approach is 130 ft/sec
greater than the velocity corresponding to C,, and 312 ft/sec less than the
escape velocity.

In reference 3-4 trajectories were calculated using the above equations
and also using the three body equations (equation 3.2-7) for values of
y from O to 180°. In Figure 3-12 the results of one of these calculations
are shown for y; =0 and h = 124,53 mi (200 km). The trajectory labeled
I is the two body ellipse with the initial velocity equal to Vb (equation
(3.10-5». The trajectory labeled II is an impact trajectory with Moon
computed using the three body equations (3.2-7). The three body trajectories
are shown in both the (x, y) rotating axes system and the (xeo, Yeo)
inertial axes system (taken through the center of the Eerth at t = 0).

It can be seen that the trajectories are almost the same until they reach

the vicinity of the Moon. It was found in reference 3.4 that equation (3.10-3)
can be used for determining the minimum velocity necessary for striking the
Moon with an initial velocity accuracy of approximately 0.02 meters per second.
Thus the initial conditions can be calculated disregarding the influence of
the Moon. Nevertheless, the actual orbits in the vicinity of the Moon will

vary considersbly from the simple elliptical orbit.
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3.11 Locus of Points of Equal Attraction
Between the Earth and the Moon
Considerable attention has been given to the point of equal gravitational
attraction between the Earth and the Moon. It has been suggested in many
sources that a space vehicle need only reach this point of equal attraction
to reach the Moon or "to fall into the Moon." |
Let r; be the distance of a space vehicle from one celestial body

and rp, the distance from another celestial body.

The locus of points of equal attraction is then given by

ro - COSs GM + JM]_/MQ - sin2 Y
—_—— 3.11=1
D Ml/MQ- l

12d<
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whore My and M are the mass of the two bodles (for instance, the

Farth and the Moon). This locus can be shown to be equal to a sphere of

radius

rgEM . J My /M

D Mi/Mg -1

with its center located at D + e where
e, 1
D M/M -1

For the Earth-Sun

r
_&SE . 0.00173177
R

where in this case R 1s the distance between the Earth and the Sun;

or in terms of the distance from the Earth to the Moon:

Tesk

= 0.6743

For the Earth-Moon:

rg
EM - 0.1122

The sphere of equal gravitaticnel attraction (sometimes called
"gravisphere") between the Earth and the Sun and between the Earth end
the Moon is shown in Figure 3-13. It is to be noted that the Moon is

always attracted more by the Sun than by the Earth. In Figure 3-1k is

3 . 11-2

3.11-3

cshown the gravitational attracticn of the Farth and of the Moon along the

line joining the Earth and the Mooﬁ.

<7 Y,
>
1i2<
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In reference 3-i calculations were made of an orbit which would
reach the point of equal gravitational attraction. The results are shown
in Figure 3-15. The trajectory lebeled I is the ellipse neglecting the
presence of the Moon, and the curve labeled II is the result of the three-
body calculations. The perturbation of the orbit caused by the Moon is
very noticeable in Figure 3-15 and it can be seen that although the point
of equal gravitational attraction is exceeded the vehicle would not
reach the Moon. Thus the belief that the vehicle need only reach the

roint of equal gravitational attraction to reach the Moon is not true.

113<
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3.12 Sphere of Influence

There is another space about attracting bodies called the Sphere of
Influence (references 3-1 and 3.4) which is more important to trajectory
studies than the "gravisphere". The Sphere of Influence is defined as
follows for the Sun-Earth system:

The location in space sbout the Earth where the ratio of the force
with which the Sun perturbs the geocentric (about Earth) motion of e
vehicle (Dg) to the force of the Earth's attraction (AE) is equal to the
ratio of the force with which the Earth perturbs the heliocentric (about
Sun) motion of the vehicle (DE) to the attraction of the Sun (Ag) is called
the Sphere of Influence of the Earth. This definition is more clearly stated

with the equation

Ds Dk 3,12-1
A Ag

where Dg and Dg represen’ the disturbing force of the Sun and Earth
respectively and Ag and Ag represent the attraction of the Sun and

Earth respectively. Within the Sphere of Influence:

Ds . D 3,12-2
Ag Ag

114< L
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The ratio of the force with which the Sun perturbs the geocentric
motion of a space vehicle to the force of attraction of the Earth is found
as follows:
From the preceding the acceleration of the space vehicle due to the
Earth is
Apy = EEE 3.12-3
r,2

The acceleration of the space vehicle due to the Sum is

Gl

Agy = —'332 © 3,124k

The acceleration of the Earth due to the Sun is

Asg = —3 3.12-5

The ratio of the disturbing effect of the Sun to the attraction of the
Earth is then

%5 Aem-bm (M) s (R+e)
Ag AgM \Mg/ © RZ o2

In a similar manner, the ratio of the disturbing effect with which the

Earth perturbs the heliocentric motion of a vehicle to the attraction of

the Sun is
R+r
. % o3> ( *) 3.12-7
Ag  \Mg R2 ry2
The Sphere of Influence is defined as the space about the Earth in which
Ds (D 3,12-2
Ag  Ag

135< i
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Equating the two sides of equation 3,12-2 the value for the boundary

of the Sphere of Influence can be found to be

R +ry 1/5 ME\2/5
ry = <2R - r*> (R - %) <§s-) 3.12-3

The disturbing effect is & maximum when rs 3is positive (nearest the Sun)
and & minimum when rx 1is negative (farthest from the Sun) .
Now since Mg > > Mg, then R > > ry and the radius of the Sphere of

Influence can be given approximately by

= (7 G

2/5 3.12-k
rx =~ 0.8705 R <§§>

For the Sun-Earth system equation (3.13-4) 1is an excellent approximation
since Mg/Mg = 333,434, The Sphere of Influence given by equation (3.12-l)
ebout the‘Earth is

Tgg = 502,000 miles
or about 2.1 times the distance between the Earth and the Moon. Thus the
Sphere of Influence of the Eerth includes the Moon.

The Sphere of Influence of the Moon found in the same manner (equation

(3.1244)) is
Ty = 35,800 mi = 0.1498 D
This approximation for the Moon is not as exact as for the Earth since .

Mgp/My = 61.45. Equation (3.12-4) can be used as a first estimate, however,

and if more accurate values ere desired this value may be substituted in

equation (3.12-3) and then a more correct value found by iteration.

116<
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The location of the Sphere of Influence (on a line between the Earth and
the Moon) found by iteration was 32,200 miles in front of the Moon and
39,600 miles in back of the Moon. The everege of these two values is
about the same as given by equation (3.12-4).

In Figure 3-16 the Sphere of Influence for the Earth and the Moon is
shown. The Sphere of Influence of the Moon is also shown in Figure 3-13%.

It will be of interest to compute the ratio of the disturbance of the
Sun on the geocentric motion of a space vehicle to the attraction of the
Earth. Within the Sphere of Influence the magnitude of the perturbing

action of the Sun will be a maximum at the boundary. This value is:

D
=S = 0.104
Ag

At a distance of the Moon's orbit this value is:

l-)-s- = 0.011

Ag
and of course at distances less than the distance to the Moon from the
Earth the effect of the Sun is much smaller. Thus the effect of the Sun
on the motion of a space vehicle within the Earth-Moon system is small
(one percent or less) and probasbly can be neglected in preliminary
calculations for Earth-Moon vehicles.

The ratio of the perturbing effect of the Earth on the selenocentric

(about Moon) motion of a space vehicle to the attraction of the Moon

at the boundary of the Sphere of Influence of the Moon is

Dg

— = 0.702
Ay
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Therefore the perturbing effect of the Earth is about U percent of

the attraction of the Moon at the boundary of the Sphere of Influence.
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3.13 Approximate Method of Calculating Trajectories
of Lunar Vehicles

If it is assumed that within the Sphere of Influence of a body
that perturbations of other bodies may be neglected then orbits can be
computed using the two body equations of SECTION I. The trajectory
can be divided into two parts for the Earth~Moon system:

1. Motion toward or away from the Sphere of Influence in which

the effect of the Moon is neglected.

2. Motion within the Sphere of Influence in which the effect of

the Earth is neglected.

The motion toward or away from the Sphere of Influence (1) is
calculated by means of the two body orbit equations using the initial
conditions ry, Vel, 71, and A} of the geocentric coordinate system.
At the point where the vehicle enters the Sphere of Influence of the
Moon the coordinates and the entry velocity Veg are converted to the
selenocentric (Moon) coordinate system.

The approach trajectory may be an ellipse » & parabola, or a
hyperbola depending on the initial velocity. In reference 3-4 it was
shown that the part of the trajectory located within the Sphere of
Influence of the Moon is always a hyperbola in selenocentric coordinates.

The Escape velocity of the Moon on the boundary of the Sphere of

Influence is

i va = ,/2 % = 1352.6 ft/sec

N
AN
o

A



3140

where GMy = Hoon = 1.7283 x 10M* £t3/sec?

Since the entry selenocentric velocities are always greater than
the Escape Velocity of the Moon it is apparent that the Moon cannot
"capture" the vehicle and an artificial satellite of the Moon cannot
be established without the use of retrograde rockets.

3.13.1 Method of calculating lunar orbits using approximate

method.- The approximate method 1is {1lustrated in the sketch on the
following page. In the following description the small rotation of
the Earth about the Moon is neglected. The effects of this assumption
are discussed later.

The initial conditions for the approach trajectory as indicated in
sketch a and b are Vel, rel, 731’ and the orientation angle A between
the major axis of the approach orbit and the initial position of the
Earth-Moon axis. The point at which the approach trajectory intersects
the Sphere of Influence 1s determined (either analytically or graphically)
and at this point (point 2 in the sketch) the geocentric parameters
re ? Vee, and 7e2 are converted to the corresponding selenocentric
parameters Tmos Vma, and Tmp* These values may be found in the following
manner.

Referring to sketches (a) and (b), the radial velocity of the Moon

(Vm) is

Vw =D 3.,13=1

The angle npo between the Earth-Moon axis D and the radius re,
is
q2=9e2+7\-wt2-1t 3,132

1.6<
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(a)

The velocity vectors may be found from the following vector diagram:

lz

Note that the numerals 1, 2, 3 refer to times of consec utive

positions >f the Moon.
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The angle Cp between Véz and V, is

Co = nf2 - ('192 + 12) 3.13=3
but
y=xf2-a 3.13-h
Therefore
Ca = 7ep = M2 3.13-5

The entry velocity in selenocentric coordinates is then

V2 = Ve 2 + V2 - 2 Ve, V,, cos Cp 3.13-6

The angle B .ctween the initial selenocentric radius (rme = T'y)

and the geocentric radius Teo at time t, 1is given by

sin
sin B = 2 3,137
ry/ D
The angle A2 between Ve2 and Vm2 is given by
v(.l)
sin Ay = — sin Cp 3,13%-8
Vmg
The angle o, is then equal to

124<
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or

7m2 = B - A2 - 732 3.13-10

and, of course, the final entry condition is

rm2 = Iy 3.13=11

With these initial conditions (equations 3.13-6, 10, and 11) the
orbit within the Sphere of Influence can be calculated by the methods
of SECTION I.

Next we must concern ourselves with the relationships of the
paraneters within the Sphere of Influence. Referring to sketch (b)
and (c) we note that the angle E; between rsx and D 1is given by

r,_,2
sin E2 = r_ sin n2 3.13=-12
*

The angle @ between the Moon x axis and Tmy = Ta is

9= Ep - wtp 3.13-13

The angle 62 1in sketch (c¢) is the arienzation angle given as 91 in
SECTION I:
8, = 8; of SECTION I
The angle 90 between the Moon x axis and the major axis of the
selenocentric orbit is
8o = 02 ~= @ =« 3.13=1h
The angie 8z between the major axis and Tmz = T is

93 = 21 - 02 3. 1%2=15
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and since Tmy = Tmz = T#

3,13-16

Vg = Vimy 3.13-17

The angle u between the major axis of the selenocentric orbit

xr

'm3

1
ana  vpo or is

TR e (cz.m3 + 63) 3.13-18

or since agz = x 2 - Tms

p=x/2+ Tmz - 93 3.13-19

The angle B between the entry selenocentric velocity (Vhe) and
the exit selenocentric velocity (Vha) is

B=x ~2u 3.13=-20

or

5= 2(03 = 7ms) 3.13-21

The angle ¥ between the Moon x axis and the exit velocity Vhs is

V= 05+ 4 3.13=22

The conditions on leaving the Sphere of Influence are found as
follows (see sketch (b) and (c)):

The angle E3 between D and Tmz = re 1s

Ex = ¥ = oty + ang 3.13-23

*—\
0
op)

A
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Therefore the exit geocentric radius is

re32 = r*a +D° - 2ry D cos E3

The angle C3 between Vm3 and Vw is
C} = 1(/2 - ¥ + wts

Therefore exit geocentric velocity is

The angle n3 between Tes and D 4is given by

T
sin ny = P sin E3

.ex
The angle A5 between Ve3 and Vm3 is given by

v
sin A5 = Ve-u-) sin 03
3

3. 13-21&

3.13-25

3.13-26

3.13=27

3.13-28

The angle between the geocentric radius r and the velocity
°'e3 03

vector \Ve5 is then

%38l‘A3+*-wt3+n3

or since 7y =

[V
'
e

1077,

3.13-29
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735 = A3 + C:‘5 - 1]5 - X 2.13-%0 .

Thus the exit geocentric conditions given by equations (3.13-2k4), .
(3.13-26), and (3.13-30) can be used with the methods of SECTION I to
compute the orbit after leaving the Sphere of Influence.

3,13,2 Motion within the lunar Sphere of Influence in Geocentric

i coordinates.- The motion within the Sphere of Influence can be given

in terms of the Earth coordinate system as follows:

AYm
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The angle exm between the Moon x axis and the instantanecous

raiius Tn of the se2lenocentric orbit is

Oy = On - 9 3.13-31

where Op is the angle 6 (see SECTION I) for the selenocentric orbit.

The geoc~ntric radius 1s then

re@=r24+D24+2r, Dcos (exm + wt) 3,13-32

The angle n 1is given by

r
1 = 2 gin (6, + at 3.13-33
sin n Te ( Xm )
and the angle ee is
ee =t - n 3'13'5&'

3.13.3 Effect of neglecting the Earth's revolution about the Moon.e

The approximate method descxfibed in the previous section was based on the
assumption that the Moon rotated about the center of the Earth instead
of the center of mass of the Earth-Moon system. The major effect of
this assumption is that the angle n between the Earth-Moon axis and
the radius from the Earth to the vehicle will be in error by approximately
1 percent or less. (< 0.1 deg)
In calculating the approach trajectory using the two-body -relationships

the errors in the geocentric parameters 6o and re due to the revolution

of the Earth about the center of mass will be less than 2 percent. This

=

178<
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-

is a relatively large effect but can be corrected by calculating the
initial approach trajectory about the revolving Earth using the equations
of SECTION I in a step by step proce dure.

In addition the trigonometric proce dures of SECTION 3.13.1 should
be used with caution since these were developed for the particular case
{1lustrated in sketches (a), (b), and (c). In other cases certain
adjustments may have to be made based on the physical characteristics of
the orbit being calculated.

A trajectory calculated using the approximate method (ref. 3-4) is
shown in Figure 3-17. (It should be noted in Figure 3-17 and other
figures taken from reference 3.4 that the rotating y axis has been
shifted to the midpoint between the Earth and the Moon and is designated
as y'. Also in reference 3.4 the Moon was located at wt + x as
compared to the results prasented in this sectionm, and the figures taken

from reference 3-4 have not been redrawn.)

130<
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3.14 Characteristics of Approach Trajectories
In reference 3-4 a study of the characteristics of approach
trajectories at the boundary of the Sphere qf Influence was made and
the results are indicated in Figures 3-18 and 3-19 and in sketch (e).
In Figure 3-18 the geocentric entry angle deys the geocentric entry

velocity Vea, and the initial selenocentric velocity V,_ are plotted

m2
against the difference between the initial geocentric velocity and the
escape velocity at the launching altitude (Ve, - Veg). Curves are shown
for entry radii of D2 rx and for initial launch angles of a; = ¥ x/2
(7 = 0,280°). It may be noted that for initial lsunching velocities
greater thon the escape velocity that the location of entry into the
Sphere of Influence (re = D # ry) does not materially alter the angle
Co - or the entry velocity Vea. At launching speeds less than escape
velocity and near the minimum velocity for reaching the Moon the effect
of the location of entry is more pronounced.

Also it is indicated that the initial selenocentric velocity vm2
is not changed greatly by the direction of lawunch. (a.‘.=1 = % «/2)
At launch speeds near or greater than escape velocity *he antry angle
Qey does not change rapidly and is in the range below 10 degrees.

At launch speeds greater than escape velocity an increase of
0.1 km/sec in the launching velocity Ve, results in an increase of about
0.4 km/sec in the entry velocity Ve, and the initial selenocentric

velocity Vm?.

131<
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The range of possible orbits within the Sphere of Influence is

ipndicated in the sketch (e)

(€)

The flight time required to reach the Sphere of Influence of the
Moon from an altitude of 200 kilometers above the Earth is shown in
Figure 3-19 as a function of the launch velocity increment (Vel - Veg) -
(ref. 3-4) It can be seen that the effect of the launch elevation angle
(o) on the time is very small. The flight time to the Sphere of Influence
varies from sbout 5 days near the minumum velocity to about 1 day at

0.5 kilometer/second above escape velocity.

132<
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3.15 Trajectories to Strike the Moon

3.15.1 Types of Impact Trajectories.~ In any study on lunar flight
the first trajectory onme thinks of is an impact trajectory. . Impact

trajectories can be divided into four classes (ref. 3-4) as indicated
in sketch (f)

A-Ascendmg D-Descending

Impact '!'ra) jectories

The trajectories can be classified as striking the Moon on an
ascending arm A or a descending arm D; and as launched in the direction
of the Moon's rotation (a > 0) or opposite to the direction of the Mocn's
rotation (a < 0).

A typical impact trajectory of class A, (a > O) is shown in Figure
3-20 in inertial x5 - yo axes and in Figure 3-21 in rotating x-y axes.
(Ref. 3-5)
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In Figure 3-22 are shown the conditions at launch for impact with
the Moon calculated using the two body ejuations of SECTION 3.10. The
orientation angle A between the Earth-Moon axis and the initial

launch radius are plotted against the launch velocity increment Vel - VeE

LA
M

At a launch angle of a = 90° (7 = 0°) the variation of the launch
orientation angle A is small and A~ .85 radian (48.7 degrees). For
a launch angle of a = » x/2 which is opposite to the direction of
rotation of the Moon A varies between 1 and - .5 radian for the speed
range shown.

The errors caused by using two-body equations for Figure 3-g2 were
found in reference 3-4 to amount to a distance error of 10-20 kilometers
at the Moon near the minimum initial velocity and decreasing to 1 ki.iousier
at launch speeds above escape velocity.

In Figure 3-23 (taken from reference 3.6) the launching conditions
for striking the Moon are shown for three orientation angles ;. The

orientation angle 8; 1is defined by

134+<.
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8L = A + 6 3.15-1

In Figure 3-22 the orbit orientation angle 6; = O; therefore A = 0f.

In Figure 3-23 the launch velocity Vy; 1s plotted against the launch
elevation angle 7, at values of 6; = 459, 112.5°, and 180° for a
launch altitude of about 350 miles.

It can be seen fraom Figure 3-23 that a launch velocity greater than
34 ,800 ft/sec is needed to strike the Moon for a launch altitude of 350
miles. The escape velocity at this altitude is sbout 35,165 ft/sec.

From the propulsion stand point it would be desirable to select a

velocity as low as is practical, and from a guidance stand point we

would like to sziect a set of initial conditions in a region where the
necessery launch elevation angle does not vary consideratly with

velocity. Thus, from Figure 3-23 it is evident that the iaunch speed
should be above the minimum speed and that, for this example, the launch
elevation angle ¥y does not change appreciably above 35,000 ft/sec.
Therefore, in reference 3-6, a speed of 35,000 ft/sec, a launch orientation

o ..

~al - T Can . -
(™ a8

angle 8; = 72°, and a launch elevation angl 7e = 1%.2
selected for the example trajectory.
The timesrequired to reach the Moon for the conditions of Figure 3-23

are as follows:

Vi, ft/sec  t, days V 8t Moon
34,800 L = 9,000 ft/sec
35,000 2.5 "

35, 500 1.5 "
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3,15.2 Accuracy rejuirements for striking Moon.- The accuracy

requirements for lunar vehicles will depend on the type of guidance
vith which the vehicle is equipped. If the vehicle is equipped with
both a launch guidance system and a terminal guidance system the
accuracy requirements will be different than a vehicle equipped with
. r addit he accuracy requirements
or an optical scanner. In this section we shall consider the accuracy
requirements of a vehicle which has launching guidance only and follows
a free body trajectory to the Moon. In this case we can consider only
the errors in the initial launching velocity V; and launch elevation
angle 7;.

In reference 3-6 the accuracy requirements to strike some point
on the Moon were calculated for the example selected and the results
are shown in Flgures 3-24 and 3-25. In Figure 3-24 are shown the
limiting conditions for impacting on the Moon for the given set of initial
conditions. If the launch elevation angle 7 were exact then the
velocity could vary by about ¥ 45 ft/second. If the launch velocity were
exact then the launch angle could vary about } 0.3 degree. It may be
seen in Figure 3-24 that the accuracy conditions are not symnetrical,
however, and that the tolerances are less in one direction than another.
The trajectories in the vicinity of the Moon corresponding to the limiting
conditions of Figure 3-24 are shown in Figure 3-25.

In reference 3=4 approximate calculations were made of the accuracy

necessary to strike some point on the Moon, and the results of these

calculations are shown in Figure 3-26 for a launching altitude of

156<
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200 kilometers. The maximum errors in launch conditions are showi. as
the ratio of

a function of Athe initial velocity to the escape velocity (Vl/VE)-

From this figure it is indicated that the optimum condition is near the

escape velocity. At this point errors of about 180 ft/sec in velocity

and about 0.3 degree in angle can be tolerated. At speeds above and

below the escape velocity the allowable error in velocity decreases.

Although the allowsble error in launch elevation angle increases rapidly

below escape velocity, the allowable error in launch velocity decreases

rapidly nullifying the beneficial effect for launch angle.

In Figure 3-27 trajectories &e shown (ref. 3e4) for an initial
velocity close to the minimum necessary to reach the moon. In this
case the allowable error in initial velocity is a minimum. For the
exact initial conditions impact occurs, but for velocity errors of
2 meters per second (6.5 ft/sec) the vehicle misses the Moon.

In reference 3-k it was found that errors in the initial radius of
% 50 km (31 miles) were negligible. The maximum permissible error in
the orientation angle A was about 1 degree which means roughly that
the time of launch as a free body must be controlled within several
minutes.

The effect of errors in the plane of the launch was investigated
in reference 3-4 and it was found that an impact on the Moon would occur
if the vehicle were launched within 50 km (31 miles) of the plane and
with the velocity in the 2z direction less than 50 meters/second (164
ft/sec).

1.7<
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The errors indicated above are for striking the Moon on the
ascending arm of the trajectory. The accuracies must be 2-5 times
greater to strike the Moon on the descending arm. In addition it was
found that the effect of the Sun does not appreciably changethe accuracies

stated above.
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3. 16 Circum-Iannar Trajectories

3.16.1 Trajectories with return to earth.- The next lunar

trajectory of interest is the orbit which circles the Moon and then
returns to the vicinity of the Earth. Trajectories of this type may
be useful for study of the back side of the Moon. There-are four types

of circum-lunar trajectories which are indicated in the sketch below.

A - Ascending  D- Descending
Circumlunar trajectories

The trajectories can be classified as to the direction of launch:
in the direction of rotation of Moon , a > O, or opposite to the direction
of rotation, o < 0. In addition the trajectories can be further classified

as to the type of approach to and exit from the line joining the moom to

11_3‘: RN
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the Earth as indicated in the sketch for the rotating x-y axis system.
The letter A refers to the ascending arm of the trajectory before
apogee is reached and the letter D refers to the descending arm after
apogee is reached. The upper letter in the sketch refers to the type of
trajectory before crossing the line joining the Moon to the Earth, and
the lower letter refers to the type of trajectory after crossing this line.
A typical circum-lunar trajectory from reference 3-5 ie shown in
Flgure 3-28. This trajectory is of the type a >0, ﬁ. In this type of
trajectory the vehicle will either return to hit the Earth or it may miss
the Earth and establish an elliptic orbit about the Earth. The life time
of such elliptical orbits would, of course, depend on the initial conditions.
In reference 3-5 it was determined that the accuracy requirement for this
type of trajectory is the least stringent of any lunar trajectory; the
allowable error in initial velocity is 150 ft/sec and the allowable error
in elevation angle is 10 degrees. It was found, however, that the time
of the vehicles return to Earth could vary as much as 20 days. In addition
the distance of the closest approach to the Moon will vary by about
80,000 miles. Therefore, if the purpose of the vehicle were to photograph
the far side of the Moon and recover an instrument package on the Earth
the tolerances would be greatly reduced. In reference 3-5 it was found
that for an uncertainty of 1000 miles in location of the Earth reentry
point the initial velocity would have to be within 0.25 ft/sec and the

initial elevation angle would have to be within 0.03 degree.
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In reference 3-l4 trajectories were calculated which would come
within 8000miles of the center of the Moon. The results in this case

for combinations of errors in V and 7 are as follows:

av, ft/sec | Oy, deg. Remarks
-3 0.6 return to Earth
+ 33 6 return to Earth
- 33 6 collide with Moon

or do not circle

moon

The accuracy requirements diminish rapidly with an increase in the

distance that the vehicle comes from the Moon.

3.16.2 Trajectories with return to Earth with a braking ellipse.-

If now, we wished to have a vehicle circle the Moon and then return to
Earth in a reentry orbit the accuracy requirements would be very stringent.

In this case the results of reference 3-5 indicate an accuracy of 1 ft/sec

A N P

in the initial velocity and O ial launch angle to

001 degrees in the init
obtain an elliptic reentry orbit about the Earth with an uncertainty of
50,000 ft in perigee altitude. An example of such a trajectory is shown
in Figure 3-29.

In reference 3-4 it was found that errors in initial velocity as
small as 0.7 ft/sec and angle errors of 0.3 degree produced errors in
altitude for reentry of 525,000 feet and 625,000 feet, respectively.

Therefore, it is evident that a reentry orbit would be very difficult

to obtain without corrections in the flight path.

144<s o
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3.17 Allunar Trajectories
The next type of lunar trajectories is the allunar trajectory;
theze pass in front of the Moon but do not pass behind the Moon. The

four types of allunar trajectories are indicated below (ref. 3-4).

D
D A
A-Ascending D -Descending
Allunar trajectories

Again the trajectories are classified as the circum-lunar trajectories
except in this case it is possible to approach the Moon-Earth line on a
descending trajectory and exit on an ascending trajectory. This occurs

when the attraction of the Moon causes the vehicle to reverse its descending

trajectory as indicated in the sketch.
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3.18 Periodic Trajectories
One of the interesting problems of lunar trajectories is the
possibility of esteblishing a periodic orbit about the Earth and the
Moon. Considerable work has been done on this problem, some of which
is reported in reference 3-4.

3.18.1 Periodic circum-lunar trajectories.- The most interesting

periodic orbit would be ome which would circle both the Moon and the Earth.

me
X

There exist such orbits which appear somewhat like the sketch above.
In reference 3-4 several periodic circumlunar orbits were calculated

and some characteristics of these are listed in the following table:

143< ¢
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Te, mi Ty, ol V1, ft/sec
1. L, 084 93 36,504
2. 26,229 513 14, k41
3, 51,475 932 10,446
L, 72,325 1,243 8,995

It mey be seen that the only orbit which would not strike the Moon
is number 4, and for this orbit the minimum radius from the Earth is over
72,000 miles or almost 20 Earth radii. Such an orbit would probably be
of little use. In addition this type of orbit is unstable and perturbations
would cause it to diverge. Therefore, there seems to be little possibility
of establishing a circumlunar periodic orbit about the Earth and Moon.

3.18.2 Periodic allunar trajectories.- Although there appears to be

only one family of circumlunar trajectories there are an unlimited nurber

of allunar trajectories possible. There has been considerable mathematical
treatment of such trajectories which are referred to in reference 3k,
Several allunar trajectories computed in reference 3.4 are shown in

Figure 3-30. The periods of the trajectories shown vary from about 0.5

to 1.5 months. Although such crbits are of interest it is doubtful that
such orbits could be established for a very long period due to perturbations

of the orbit.




3-65

3.19 Establishing an Artificial Satellite of the Moon

In a previous section it was indicated that the Moon could not
“capture" a vehicle because the entry selenocentric velocity was greater
than the escape velocity. Therefore in order to establish a satellite
of the Moon i1t is necessary to decrease the selenocentric velocity below
the escape velocity with & retrograde rocket. In order for the satellite
to stay in orbit about the Moon indefinitely it would be necessary for
the velocity to be reduced considerably so that the vehicle would not
leave the Sphere of Influence.

The maximum velocity for the vehicle to remain in the vicinity of the
Moon can be obtained from Jacobi's Integral for C = C2 (see section 3.k,
and Figure 3=3). In reference 3-8 a study of lunar satellite orbits was
made and the maximum velocities were calculated. The maximum allowable
velocity in selenocentric coordinates is shown plotted agsinst altitude
above the Moon's surface in Figure 3-31. Besides the danger of recapture

by the Earth there is also the possibility of impacting on the Moon.

-
L = == P et Woa ————r e - - ea P AAVAMLE W N =4

Therefore, calculations were made in reference 3-8 of the minimm velocitie
corresponding to lunar impact using two body equations (see SECTION I)

and these minimum velocities are also plotted in Figue 3-31. Thus for
establishing & lunar satellite the selenocentric velocities must be

kept approximately between the limits shown in Figure 3-31. In reference
3.8 1t was found that velocities slightly in excess of the maximumm could
be used for retrograde orbits but that velocities slightly below'this
maximm would have to be used for direct (in the direction of the Moon's

rotation) orbits.
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A typical approach trajectory from the Earth is shown in Figure 3.32,
and in Figure 3-33 circular lunar satellite orbits are shown as they
would appear in x,, ¥, inertial axes. (Reference 3-8). In Figure 3-3L
a satellite orbit about the Moon is shown in rotating x, y coordinates.
In Figure 3-35 an orbit is shown in which the initial selenocentric
velocity was above the maximum allowable velocity and the vehicle 1s
recaptured by the Earth. A near circular satellite orbit at a distance
of 20,000 miles from the Moon is shown in Figure 3=36 {ref. 3-8).

In Figure 3-34 it is evident that the two body approach {SECTION 3,13)
could not be used for many orbits of the lunar satellite since the
perturbations become more noticeable after several orbital revolutions.

The disturbing force of the Earth is about 70 percent of the attraction
of the Moon near the Sphere of Influence. Therefore, for more than one
or two revolutions about the Moon the three body equations must be used.

In reference 3-8 a typical satellite orbit about the Moon was computed
and the allowable errors in launching conditions were computed. This
satellite orbit is shown in Figure %-37. The vehicle was launched as
indicated below and a satellite orbit was established at 1,000 miles from

the surface of the Moon.

J -

o’ = /14 2°

V, = 3§00 t/sec
146<
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The entry selenocentric velocity at the point where the retrograde rocket
vas assumed to be fired was T707 ft/sec. For a 1,000 mile distance the
velocity must be below 5,338 ft/sec. The minimum allowable velocity was
3,280 ft/sec. Thersforethe value 4,309 ft/sec was selected for the
satellite crbit. This requires a velocity increment of about 3,400 ft/sec
from the retrograde rocket. (For other satellite orbits velocity reductions
of 2000 to 6000 £t/sec are required.)

The allowable errors in initial velocity Ve; and launch elevation

angle 7, to establish this orbit were

- 33 <A Vey < T7 ft/sec

= 3 <A ye; < .135 degree

In addition it was found that an error in the retrograile velocity increment
of a few percent would not significantly affect the allowable errors in
velocity and direction given abov:.

For the particular satellite orbit computed in reforence 3-8, the

time of errivel st +the Moon var

- L am T P A
[~ 84 L £+ VU WAIT SV YQw LT WYy 41

T the range of
errorsindicated above.

The above values are representative for retrograde satellite orbits H
for direct orbits the allowable errors in velocity are about one half of
those indicated above, whereas the allowable errors in launch elevation
angle are approximately the same as for the retrograde satellite orbit.

If wve desired that the initial satellite orbit be established within
100 miles of the desired altitude of 1000 miles, then according to

reference 3-5 it was found that the initial velocity from the Earth must

14'7<
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be established within 4 ft/sec and the initial launch angle must be
witnin 0.02 degree.

In the above discussion we have tacitly assumed that the retrograde
rceket can be fired at the right time and in the right direction. The
direction of firing might be controlled by spin stabilizing the rocket
in the correct attitude immediately after the powered portion of the
approach trajectory. The timing of the retrograde rocket firing, however,
might prove to be the most difficult problem. In reference 3.8 1t is
indicated that the use of a clock to time the firing of ‘the retrograde
rocket might be impractical because of the fairly wide range of times
of arrival near the Moon. Other sources, however, have indicated that

such a timing device might be satisfactory.
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3.20 Use of the Moon for Accelerating Space Vehicles

There has been considerable interest in using the Moon as a means

for accelerating a space vehicle for interplanetary travel. Since the

Moon revolves about the Earth near the plane of other Planetary orbits,

at some time during each month the Moon would be in a position to

accelerate a vehicle toward any planet.

The use of the Moon for accelerating

space vehicles war considered in reference 3-k,

There are four types of maximum acceleration trajectories as

indicated below

A - Ascending

aCc,<o
ny’ yeo
g
\
\
M
A
Y Y

D- Descending

Lunar accelerating #rajectories

These four types are analogous to those for striking the Moon

(see SECTION 3.15.1).

In order to obtain the greatest acceleration the

3

A
4

G<



3-70

vehicle should pass very close to the surface of the Moon and pass
out of the Sphere of Influence of the Moon in a direction as close as
possible to the direction of the Moon's velocity about the Earth.

Thus, the trajectory for maximum acceleration (AV = VéB - Veg)
passes around the Moon in a ccunter-clockwise direction for approach
on an ascending arm and in a clockwise direction for descending arms
as indicated in the sketch. The exit velocity Vés is always greater
than escape velocity and almost independent of initial velocity Vél;
however, the acceleration increment (A V = Ves - Véz) depends on the
initial velocity V; and 1s greatest near the minimum velocity V)
necesssry to reach the Moon and decreases as the initial velocity V)
{8 increased. The maximum velocity increment near the minimum velocity
is

BV =Ves - Vo, ™ 4920 ft/sec

The maximum velocity increment given above is for the turn around
the Moon to be at the radius of the Moon. Because of the possibility of
colliding with the Moon the trajectory must be raised from the surface
of the Moon, thus reducing the gain in velocity. In reference 3-4 1t
is shown, for one example, that an error of 328 ft/sec would cause an
error in radius at the Moon of 75 miles. An error in launch elevation
angle of 1 degree would cause an error in radius of 62 miles.

In addition to using the Moon to accelerate a space vehicle it
could be used to decelerate a space vehicle. The maximum deceleration
would be obtained by passing out of the Sphere of Influence in a direction

opposite to the Moon's rotation.

130<
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The practicality of using the Moon to accelerate a space vehicle
depends on whether it costs more in weight for the additional guidance
accuracy so that the vehicle could come close enough to the Moon to
benefit from it or whether the extra weight could be put more efficiently

into a larger power plant.
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3,21 Propulsion Requirements for Lunar Vehicles

A discussion of Lunar trajectories would not be complete without
an indication of the propulsion requirements for such orbits. In Figure
3.38 the velocity increments obtainable from several types of propulsion
systems are shown as a function of the ratio of initial weight to pay-
load weight. It will be noted that the range of chemical propulsicn
shown indicates a considerably more efficient system than that used with
Vanguard type satellites. The number of rocket steps used also increases
as each curve increases, starting with 2 steps at the lowest velocity
increments and increasing to 5 steps at the highest velocity increments
shown in Figure 3-38. The approximate velocity increments necessary to

perform various lunar orbits are indicated below:

Trajectory Total A V, ft/sec
1. Moon Impact 35,000
2. Circumlunar 35,000

3, Circumlunar with return to

satellite orbit at Earth 47,000
k. Lunar satellite 38,000
5. Landing on Moon 41,000

The additional velocities for trajectories 3, 4, and 5 reflect the use

of rockets in entering the satellite orbits or landing on Moon.
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TABLE 3-1
AXES TRANSFORMATIONS USEFUL IN THREE BODY PROBLEM

(Based on D = 1)
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+2u>ye-u)2xe

Xey = ¥o = X1

xm-

Ym =

xeﬂ

Ye =

o~ Yo

o= %o

’.‘eo = Xo

Yeo = Yo

%eq = 2o

X, = Xp cos wt
Yo = Xo sin wt
2o

Xg = cos wt
Ye - sin wt

Ze

Xg = X cos wt
Yo = X1 sin wt
%o
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§e+wsina)t

Ye - ® cos wt

=;:°+wx251nwt

=§°-wx2cosmt

20



< X, —

X, = 2900 17
Xo= 236/70 777/

D = 239070 wu

M = Me + Mpm

Me/M= 8. 4&

R = 3960 /7

cw = 0.22997 raa)day

£1q.3-1. Larth-/Moon system
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Frg. 3-6  Contours of zesro relative velocity
7 I y) plane drawn to Scale. (ref 3-4)




fr9.3-7 Contours of zero refative velocity
n the xy plane tor the earth- moon
system. c: 0.20 .
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F1g. 3-8 Contour of zero relative relocity 7 the

X,y plane 1or the corth-mon system:
C- 2.9/6, 1- 22925 [1/56C.
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/g 3-11 Trajectory 7or minimum 1nitial relocrty
o<r</80° (ref-3-4)
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Frg 3-12 Comparrson of /mpact trajectory

cakulated using two-body equations with thot
calculated asig three-body equations (ref’s-2)
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attraction between Earth and Moon. (ref 3-4)
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Firqure 3-/6.-Comparison of sphere of
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1cure 3-17.- Illustratien of approximate method of catculatin
Lunar trajectories.(ref. 3-4) ’
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Ficure 3-22.- Variation of the orientation angle JA, with
Jaunch velocity for impact with the moon. (ref. 3‘4-)
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Figure 3-24-Limiting conditions for impacting on
the forward surface of the moon, ref. 5-6.
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Figure 3-25.- Trajectories in the vicinily of the moon
corresponding to the limiting conditions
of figure 324, rer 3-6
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Fiqure 3-R7.- Trajectories with errors ;n imitial velocity close
to the minimum.
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Figure 3-30 Periodic allunar trajectories.
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Figute 3-30.- Periodic allunar trajectories eoncluded.

187<



/

Ac/
P S

A
88<




L€ e ‘oot Y SO 24l/)205 D YSquase 03 1140209/ 049 V28 L7/

- 0=

01 &0 80 L0 90 G0 $0 €0 o  lo—O0F J0-

a 1 ! | | | | | I | \_/ |
i \ o.w

- 1’0

470
7
4 €0

90

2 85<



/8

/6

JE

S

/O

.08

06

O

02

——

?% .

.02

O4

L:52 /iou,es
/,z ,oasz of f/73
? Tf oo

\ [0 T

|

frg 3-35 Path of Junar satellites with circular orbits
as seern trom inertial ares rear Earth

FUSIVAS




10

05

-05r

-./0

H) = o000 +22./08
Vo, - ©. 2783 14,

ma X

/.08

/?g. 3-3%. Orbit of Lunar saite/lite 17 rotating
X 4 ares sSystesm

L9i<



4155909 0 25 Y407 243 FG 21[/F70S

woows 200 h3190/84 [OIQIU!

sApp oz

Ao,

< ezcor Y

Syrws oool

qoUn) 40 84myd023Yy S bl

1

(W




A = ZO)OOOm//e.:
147/ e Corcwlar Velocrty ‘{

10 | eo days

L
£/0

f1g 3-36 Nearly circalar lunar satellite oré/t.

-
(o
a2

A



My s SB0O /77 .1/85

N
Voy, = o
~ = 0. £ 7‘4"»14/.
.0 N
\7'ra/7.s'/z‘ Crajec tory
N
~
N
AN
N
Lo b AN
/ 2,875 a/F{‘/’ N
. REO00
0
O AoTA
o /8762
\
. \
1 o
o M ez — o
\
v ao3s \
A/582 S \
\
Moorr \
/
Q- /25 00
-.o/F 0.0625.
09375
-.02 L
Fig 537 Moon satellite orbit resulting from /nitial

condstions qivern In tert.

194<




YT
TR A s

v
F e

™ vet 4

v
2
t
T
t
1
L

F-h
Ix2
T
-
o |
")
Ly
I
1
Lo

7

pp a3
L L
]

—t

1

o
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SECTICN IV

ORBITAT TRANSFER

Because present interest is on the transfer from an existing orbit
into a re-entry ortit, the equations to follow are directed toward the
re-entry transfer problem. The first concern is given to the apogee kick
transfer into the re-entry orbit and then the problem of a kick at any
arbitrary point in an orbit is considered. Even though the equations are
directed toward the re-entry problem they may be adaptsd to a variety of
other non entry problems.

L.l 2pogee Kick Transfer

If it is assumed that we have a vehicle in an orbit entirely outside
the main atmosrhere, one of the simplest and more effective ways t o cause
the vehicle to enter the atmosphere is by firing a retsrding rocket at
the apogee, Tre equations which pertain tc an apogee kick re-entry are
cerived as follows:

The following three equations were obtained from equstions (1.2-17),

(1.3-8), (1.h-2), and (1.h=3) of SEZTION I.
+ 2
é:(irf’ !

% R*/ d
L
d

|
<
J
5
»

S
0
(o)

A

(boa-1)

(b.1-2)

(L.1-3)



Thus from equation (L.1-2)
/ _ : /
d =(% _?"R/VP )% (bo1-k)

and combining equation (l.1-1) and (l,1-L)

. ( (v,_dj )(VP/G) 1.5)

which mav be roduced tc

€ = ( \/F,_’.l?f'E — /) (L.1-6)

-]

Other combinations of equations (L.1-1), (4.1-2), and (L.1-3) yield:

c -_-_(/ — V_a:_g_a:) (L.1-7)

[+E __/I-&
V V( : I} = f;(—-——-/* = (. 1-8)

If the original conditions at the apogee are Vao and Ta, and after
the retarding rockets sre fired a change in velocity (avV) 1is effectively
instanteneously added, the new conditicns at the apogee are now Val and
Pal where Val = (Vao + AV) and ra1 = Tge The eccentricity, radius of

the perigee and velocity at the perigee are given by




L-3
3
C = [,_ Vo, ] (4.1-9)
9. k>
P a, \7 £ <. ( )
/+ €,
VP,_ v“. (/—-e,) (4.1-11)
Also the new semi major axis is established as
_ Ve, 15 [ /= €&, (L.1-12)
Q) =—ugte = L re - (5S)
a
= —t (L.1-13)
|+ E,
The equation of the new ellipse is
= rz, (1- €)
o/ + € cos E (be1-1h)
where e, is defined by eguation (h.1-9).

Now that the new orbit hass been established, it is desired to know
where the vehicle will enter the atmosphere and what will be the re-entry
angle, that is, the angle between the flight path and the horizon at the
point of re-entry. It is assumed that AV is sufficiently large to cause
the re-entry. The upper limit of the atmosphere is considered at re
which is usually taken to be somewhere about 50 - 70 miles. The re-entry
will occur at the angle © where the radius r of the ellipse is equal to

re. From equation (L.1-1L)

RN
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- ,’;,(/— 61)
< /+€,Cosee

(L.1-15)

Solving for cos 6,

ré: (/—6/)

r
‘e

ra,(l-€,) _ /_]
6' re. éI

/*+ €, cos Qe = (L,1-16)

cos Qe = (L.1-17)

and the re-entry position 6, is given by

O =cos | o, (1-€) _ L] (4.1-18)
€ €, e €,

The re-entry angle is defined as the angle between a line perpendicular
to r at ©, and the tangent to the orbit at this point. The general
equation for this angle at all values of © was given in SECTION I as
equation (1.5-8).

€ sin 6
'f'an7= Ll

/+ € cos © (4.1-15)

Thus the re-entry angle Ye at 6, is given by

_ -1 €, s/n G (4.1-20)
1= tan /+ € cos Oq

For counterclockwise vehicle motion, tan y = + indicates an exit, tan y = -
indicates an entry. The velocity at re-entry is given from equation (1.6-2) .

of SECTION I as
155<
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Vl = :‘:1/70,?’( é - 7‘/’-) (h.1-21)

The various equations are adaptable to the following problems.

Problem Number I: It is desired to make the vehicle re-enter at a certain
e and r,.
The valuesof 6, and r, are subsituted in equation (L.1-17)

_[rk(-e) /]
COSQC [ € e . (a)

Solving for €q:

€, cosQez-%(/-e,)—/ @

_Ta _ N ()
61 cos ec" e r;el —/
e - r;/f;_/ —_ f;_rc—. (d)
Cos Qc ta/rg Ie cos 6. +I7

Thus the eccentricity required to effect the re-entry at e,y Ie
is defined.

The velocity at the apogee, V‘l’ required to give this eccentricity
is derived in the following equations:

From equation (L.1-9)

= /- € (o)



Solving for Vg, yields:

* /—é)q Ie‘-
\/ :( o . (/ é=~/
a ’_;’ ’ ) [/‘cos + 1 (9
L Gesb ol
I, ¢os Q +7r,
R" _Ecosé‘_-fré (e)

=+
Va; q le cos Ce +1

This equation defines the velocity required at apogee to give re-entry

at 8, and re.

Thus

AV =V, -V, (&)

cos 6. + Ig @)

AV:V‘* \[ (I" cosee-fr‘

Thus the AV required at apogee r, to give re-entry at B¢, re is

defined. The re-entry angle at Ye is given by

-l €, sin 6, (3
/+ €, cos B

Ycz tan

o
()}

o
A
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The velocity at re-entry is given by equation (L.1-21)., A solution of a
tvplcal problem of this type is given in figure L-1.

Problem Number II: It is desired to make the vehicle re-enter at a certain
entry angle vye and rg.

Substitution of rg into the generzl equation of the orbit:

ro= o (/=€) (a)
€ T/+€ cos 6,

Solving for e3:

R o

él(f'ecosée-!-r;):f;—r" (c)
~_Ja —re

€ = TFcesb.+T, @)

Thus the eccentricity required to effect the re-entry at any Bes Te
is defined in (d). The interest is, however, in a particular 8, which
Will give the re-entry angle Yer

From equation (L.1-20)

€, sin ©
1+ €, cos ee_ = tan 7’ee (e)
Sin 6,
€ cos 6, — € —F—== ta’_‘?, = —/ (£)
_ 1
é; T Sin Qe (e)

Tan 7, <05 Ce

€« £Ysy

o A

\
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This defines the required eccentricity in terms of 6, and .

Muating the two equations for the required eccentricity gives

i O 4 = o = Ie (h)
SIin
E_Yi-cuee le Cos 6 + I,
Cross-multiplying and resrranging
- s/n Be s/n Oe cos O .
Fa fa tan T e tan7 Fa € @
e e
but.
cos @ =7 /-sin*6
sc that
e — o . > .
rr+le-fte s/n6 =-r,v9/-s/n"6 (3)
a q e
ton 1o e
Squaring both sides, letting
_r-ri
. . I § .
ZA/"G Sin Ge.+ A’.sm’@e_=—/; sin’ 6 ¢
cr
2Ar,sin6,=—(A"+r,")sin "6, (m)

t\\
o}
o
A




From which
' - —2A
sin @, = Aty s (n)
— o =2A
93- sin 74—,__'_—,_;—;_ (o)

where A is defined by equatiocn (k).
This defines the 8e where the re-entry is to occur. Thus, the
eccentricity of the re-entry ellipse is given by
€ = fa —I'e
le cos®, + ra

!
The velocity required at apogee Val to obtain the required Ye

(p)

and ro at re-entry is given by

/[~ T
\G r_ ¢ 6;%;; /4 (@)

when equation (p) is substituted for €1, equaticn (q) becomes

V. = 9. R" re cos Ce + Ie (r)
a "ra [ /z cos8. +r,

and thus the increment cf velocity required st apogee to give re-entry at

the prescribed Ye 8nd r, is given by

R* ~
AV = Vo—'i-"\/’?ir- fl"e cos Ge + 12 (s)

o [Qcosée+/;

« M3
UG <
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where 0O, is defined by equation (o). The velocity at re-entry is given by

equation (4.1-21). A solution to a problem of this type is given in figure
L-2,

L.2 Use of A Kick At A Point In The Orbit Other Than Apogee
The use of the kick at a point other than apogee is directed toward the
problem of re-entry at a specified angular position ©6,, altitude rg, and
re-entry angle Ye* These arbitrary re-entry conditions cannot be obtained
by a kick at apogee., The basic equations given in Section L.l may be
adapted to this type of problem,
Problem Number III: It is required to re-enter at a certzin ©,, r,, and ¥,.
One solution to this problem is to use the solution given in Section L.
to determine a re-entry orbit which will give the proper entry sngle v,
at r, and then to rotate the major axis of the orbit to give the proper
entry position 6,. Thus a re-entry orbit is obtained which satisfies the
re-entry requirements. The fransfer into this re-entry orbit is made where
the orbit of the vehicle intersects the re-entry orbit.

The equation of the orbit which gives the proper entry angle vy, at

ro. is given by

roCe(-€) "
/+ E,cos 6

and the equation of the orbit of the vehicle is given by
r'——- r;o (/— 60) (b)
/ + €_cos 6

23
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. The ellipse of equation (a) which gives the proper entry angle 7o &t
re 1is rotated counterclockwise through an angle A8 to give the proper
entry position 6, so that the equation -of the re-entry orbit becomes

ra, (1 -

=
/+€,cos(6-46)

(c)

The points of intersection of the vehicle's orbit (equation (b)) and the
re-entry orbit (equation (c)) where the transfer may be made are found by

equating the equations for the two orbit equations.

Thus,
r-l (/— é/) feen] f; /- ) (d)
/+E, cos(6-46) /+ E_cos O
. Solving for the ©'s of the intersections,
Inverting equation (d)
/+€, cos(6-A8)_ [/ + E, cos © (0
ra, (/- €,)) re,(/- €,
Expandine equstion (e)
/ € cos(6-46)= €o _cos 6
/:,(/-é,>+/;,(/— (6-00)= (/ e) o (1-€2) (£)
Let
L - A
4, (/=€) ra,(/—€.) (g)

Substituting a trignometric identity for cos (8 - 48) and collécting in

equation (f)



L-12

€, . . €
A +W(cosec¢5 A6 +s/n Os/n AG) =" (Cos O (h)

la (1-6)
Collectine in equation (i)
A+[é,cosae . ] _ _é,SInA91S’ 0 @
I’:,//— 6.) Go(l"éo).; cos® = rﬁl, ('I_él).l
Tet: And also let
_[E.c0s46 €o [ €, sin DO (
_[€ _ - 9
8 [/2,(/-6) f;o(/-éo)] C ra (/-€:)
Substituting equation (j) into equation (i) yields
A+ Bcos E=C s/n 6 (k)
And squaring
A*+2ABcos 6 +5"coa‘9 =C*(/- Co.s's) 1)

Collecting in equation (1) yields:
(A*-C*) + 2A B cos O + (8*+Ccos & = O

Let: Kj=(A-CY K=2A8 K, =(B>*+C"

where A B and C are defined in equations (g) and (j).

(m)

fhen:

K + A.cosO + K cos*6 = O (n)

3
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The solution for the @ of the intersections is thus:

6, "cos-'(-/é;'“-/,ﬁ YA )

. = (o)
2%,
where Kl)Kg)and K3 are defined in equation (m).
The radii at the intersections are
r':: ,;o (/— éo) (P)
v / + éo cos 9‘;

The velocities of the two paths at the intersection points are given by

(V). = t{5.(E - 42) @
. i@oﬁz(% - 7/'-) (r)

The arrle between the velocity vectors is given by

€, 8/n O i€ sin(8;-4 )
AY:_":Y t }/'=tt_an-16+é h )""‘t‘anl /+és'(':.s(9 AQ)) (S)

I

<
~—
I

o]

The use of the pro up Lo comsideretion of a probiem

sgetch. Thus the velocity vector diagram is estsblished by V;, V and

O’
A'}’n
The AV required to transfer from one ellipse to another may be found

from the cosine law

- AV*= (V)" (V) =2V V, cos (AY) ()

PN
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@
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and the angle m between AV and V, is

n = o (SN AT(V.)) w

Thus the velocity increment required for the transfer and the angle

of application is defined. A solution to a problem of this type is given
in figure k-3,
Problem Number IV: As in the above problem it is required to re-enter at

a certain 6., r and Ye* The solution to follow is more general than

e
the cne given above, Consider the following sketch:

— —

e ~

Orrginal Orb/t // RN

fre-en 7‘;-/ Oré/ ¢ (

\
Transler Pomt (1)—

Ma or Avis —
Re-ent Orbzl‘

7 ——(2) Re-en 7y Pont

Point (1) is an arbitrarily specified point on the original orbit of a
vehicle., It is desired to determine the magnitude and direction of the
velocity impulse required at point (1) which would cause the vehicle to go
into a re-entry orbit and enter at a specified point' (2) with re-entry

angle y,. Thus r ry, 48, and Ye are known, The first step is to

e’
determine the velocity and direction of velocity required in the re-entry
orbit at point (1) to give the desired entry at point (2). Then by simple

vector subtraction, the velocity impulse required at (1) in order to cause
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the vehicle to leave its normal orbit and go into the re-entry orbit
will be determined, The eccentricity and radius at spogee of the re-entry

orbit are given by

_ “an % "
Sin G —Tan 7, cos B :

— e (/-/'6 cos Oe)
f; (7= €) (b)

77+ € cos (6 +d 9)]
[/—-é) (c)

Bqusting equation (b) to equation (c) and then proceeding to solve for the

fz =

unknown ee

f‘e[_/+eco.see]=f‘ll_'/-f€¢os(9e+ﬁ9)] (d)

thus
le # €/ cos O, = +€r;'Co.s(Qe+Aé) (e)
Collecting
r-
I cos 6y =1 cos (6, +48) = L=le (£)

Substituting & from equation (a) in equation (f)

/:_C'Os QQ__/TCOS (ee_/.Aa): (,;-_'f-c) S/n Qe%iﬂ’:?;e,co.s g& (g)
. e

2510<
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Trignometric identity:

Cos (6, +8 0)=cos B,cos 46 -s/n 8 sin A6 (h)

thus substituting equation (h) into equation (g)

ry cos6, =17 c0s6,cos A8 +r;5in O sin 48 = "
oo Fe. :
un 16 Sln ee - ’TCOJ ée_ tan 7‘ S/n e& + r; CcCos 96

Collecting in equation (i)

: r le \ -
[z ~rcas 86+ 171 Jeos 6t [Frsin 0 ~ & 7,e+t,m7,¢]~sm 6 =0 ®

and thus

[7:(1-cos8)cos 8.+ [ (sin 46 - =) +5 "'re]S,',, g,= 0
n Te en

1et

. / r
A=r (7~ cos 46) j 5:[;,"(51'1 A6 - 7e)+ _—tancfe ] (1)

Thus equation (k) becomes

Acos 8, + B sin 6, =0 (m)

2ii<
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From which

A+ Btan 6_ = o (n)

(X

or

6, = tan” (—-—'g—) (o)

where A and B are defined in equation (1).

Equation (o) determines the angle 8 between the radius ro and
the major axis of the re-entry orbtit. Thus the angle O, 1is defined in
terms of the knowns.

Using the known 6,, the eccentricity is found from

€ = tanTe — sinTe (p)
'T Sin G.-tan 7. cos € 5/ (Be -Te)

Using the known 65, r amd ¢ the semimajor axis is given by

j’
a, = le (/+ €, cos Be) @)
! (/- €%
Using the known r. and 8 the velocity reguired at 1 to give the

! v, 2a2nd e vel

specified re-entry conditions is given by
= tofq o2 — L 7 ()
VI 7°l€ f; a,

Using the known 4@, 6., and e, the angle y at r; 1is given by

| € sin(Ge +4A8) (s)
/+ € cos (Qe-;&AQ)

7 =tan

N
Yoy
2

A
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The equation of the re-entry orbit is given by

_a(/-€Y)
T /+ € cos ©

(t)

The velocity and direction of the velocity in the re-entry orbit at
point (1) are established by equations (r) and (s). The velocity and
direction of velocity of the original orbit at point (1) are given by
equation (q) of Problem Number ITTand equation (L.1-19). The procedure
for obtaining the required velocity impulse for transfer and its direction
may be obtained by use of equations (s) and (t) of the foregoing Problem
Number III. The velocity at re-entry may be obtained by means of equation
(4.1-21). A solution to a problem of this type is given in figure L-lL.

Consideration up to now has been on the transfer from an existing
orbit into a re-entry orbit. The adaptations of the equations to other
tvpes of transfers in non-entry considerations and the treatment of minimum

energy transfers are left for later considerations.

<13<
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SECTION V
RE-ENTRY WITH TWO DEGREES OF FREELOM

Introduction.

In the previous SECTION the rrocedures for deter=-
mining the position, angle and velocity at re-entry were
established.s Once these quantities have teenr established,
the complexity of the solution for the paths, velocitles,
and decelerztions in the atmosphere depends on the complete-
ness of the differential ecuation used. The equaticns dis-
cussed here will be of the simplest neture. The vehicle 1is
to experience 1ift, drag, gravitational and linear inertia
forces only., Even the solution of the simple equations
depends on machine integration of the ecuations. However,
there are some further restrictions concerning 1ift, drag,
and air density that can be placed on these simpler equaticns
and some strictly analytical results may be obtained.

There are various paths that may be taken through the
atmosphere, It has been proposed from a heating standpoint
tc use a skip trajectory where a plunge 1s made, the vehicle
heats up, returns to altitude where radistion occurs and
cools down for another plunge, The main problem for any
path is to slow the vehicle down without excessive heating

on decelerations. It has also been shown that another some-

T -
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what favorable heat path is a plunge to say 200 -
250,000 feet where pressure drag is of a fair magnitude
and to remain at that altitude until appreciable slow
down occurs. The continuous high drag glide path has
favorable deceleration aspects, but it is fairly un-
favorable from a heating consideration. Only the

skip and e¢lide paths will be discussed and then in a

somewhat 1limited manner,

P
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SYMBOLS
reference area for lift and drag evaluation,
sq. ft.
drag coefficient
1ift coefficient
drag, 1lb,
acceleration due tc gravity, ft/sec.2
mass slugs
distance from center of Earth, ft.
radius of curvature or flight path, ft.
radius of Easrth, ft.
distance along flight path, ft.
surface ares, sc. fte.
time, sec.
velocity, ft/sec,

veloclty divided by satellite velocity at
Earth's surface

velocity of satellite at Earth's surface
weight, 1b,

coordinete of fixed axis system

range coordinate

vertical distance from surface of Earth, ft,
coordinate of fixed axes system

constant in density altitude relation

angle of flight path to horizon, radians

e 0=
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%) angle between X axls and V radians
r]
o} air density slugs/ft.”
?V angle between 2 axis and T (Section L.1)3

also remaining range (_@P- @ ) (Section L.3).

Subscripts:
b body axis
en conditions at entrance to Eerth's
atmosphere
ex conditions at exit from Earth's
atmosphere

™
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5«1 Development of Re-entry Equations Involving Lift, Drag,
Linear Inertia and Gravitational Forces.

The coordinate system showing the convention of axes
and angles 1s shown in figure (5-1a) and an exploded view
of the free body is shown in figure (5-1b). The equations
of motion are derived (see reference 5-1) as follows:

Taking a summation of the forces in the X direction:

{ 5.'7 e-m ,-'h Sp-£750’ = = M7 dV
/ ﬂ ’ /K
but

V& = V cos &

and the rate of change of velocity in the X direction is:
_4__1/./ = Vecos 6 - aV sin 6
dtl,

and thus:

EF =] simn O-tmg stn ¢ —Dcos 8 = (5.1-1)
X T e .
m ( Veos 8 -V@sin 6)

Similerly summing the forces in the 2Z direction;

F-i"—'LcosSe—m ces Y -Dsin 8 = :
_de/ =m(\./s/'n9+ Ve cos 9)
x

5.1-2)
dt
These twc ecuations are the re-entry equations of

motion where only 1ift, drag, linear inertia, and gravita-

. tional forces are involved, The equations are transferred
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from the X Z axes to tne body XyZ, axes, thus pro-
vidine for easier handling of the aerodynamic forces.
The trensfer of axes involves a simple rotation of axes

by means of the trigometric formulas for axes rotation.

Fkb-‘:;-x coSs Q —Fi J/.ﬂ 9 (501'3)

pzb= Fy sin @ FF, cos O (5.1-L)

If we substitute Fy and F, from equetions (5.1-1) and

(5.1=2) into equetions (5.1=-3) and 5.1-4) and cancel like

terms and collect,

--Lsin? = _;’_ (5.1-5)
—LW_ — cos ¥ = _\g_e. (5.1-6)

Thus, substituting the expressions for 1lift and drag welght

V=-C, ‘ﬁ'z"_tS(‘&/') =g sin v (501-7)

- - CLofo(f vtsi_l
8 = VAV s cos ¥ (5.1-8)

Also from figure (5-1)

X=V cos 7 (5.1-9)




' Vcos 7V

= (5.1-10)
v r
h = Vsn7=r (5.1-11)
?.’ = Y + 6 (5.1-12)

Equations (5.1-7) through (5.1-12) provide the equations
necessasry for re-entry calculations where only lift, inertis,
~gravitational, and drag forces are involved,

The procedure for one means of solution, that is a
step by step or digital integration of the equations is
somewhat like this, We put the initial conditions

Vo, 73, dys Pgs Ty CDO, CLO, in the equations and obtain

B, ﬁ, ﬂ, ;, ?/, i, and ¥ which when multiplied by the
increment of time At gives ¢;, V;, hy, ry, Y1, X3, and

L

these quaniities back into the equation with

7&. We put

the appropriate Cps» C,, and p and the process starts all
over again to get the various quantities at time 2. It
must be remembered that C, and Cp are functions of Mach
number and type of flow which must be known for the body be=~
fore any computations can be made. Either C, or a may
be programmed into the computations, If there is no 1lift

on the vehicle, the 1ift term is simply dropped. It might

<24<
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be mentioned that there are varlious error reducing pro-
cedures that could be used but which would complicate this
simple integration technique.

The above equations may be adapted to various problemse.
Verious 1ift time histories, drag time histories, path angle
histories may be programmed into the computations. For the
skip and glide path some results may be obtained, with some

further restrictions by solely analytical means.

The Skip Re-entry.

In the skip re-entry the vehicle enters the atmosphere,
negotiates a turn and 1s ejected into a ballistic pathe.

The equations of motion involving the forces perpen-

dicular and parallel to the flight path are respectively

(see reference 5-2).

EVL Vs
C’L 2 A - m7 cos 7: mr“__ (5.,2=-1)
-CD"E—"Z A+ mj sin = m —dt (5.2=2)

We can recognize these as equations (5.1-5) and (5.1-6)
previcusly derlved, but using the symbolism of figure (5=3).
In the top equation we have the 1ift term, the weight term,
and the centrifugal force due to the path curvature. In
the bottom equation we have the drag term, the weight term,

and the longitudinal acceleration term.

Zi5<
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If in the re-entry turn the effects of gravity are
assumed small as compared to other inertia and aerodynamic
forces (gravity effects on the downward path are also some=-
what cancelled by gravity effects on the upward path), then

the two force equations become:

zCLpY A=-m Vz-j—z—’ (5.2-3)
—z2CopV A= m S—\i (5.2-L)

- ¥4
pP=p. et (5.2-5)
Also from figure 5-3 it can be seen that,

d .
gf'=—5m r

Putting these gquantities in equation (5-15)

the V2 and ds go out and

C‘_)oo Aef? al% = sin Td7 (5.2-6)

wnich can be integrated to give

-p,
Cpngme Pt COSY - ¢Cos Yen (5.2-7)

1s taken as 0 at the effective outer limits of

where p

the atmosphere,.

<6<
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Equation (F) shows that the magnitude of the angle T
in the skip path is a single valued function of y, that
is, it has only one magnitude at any particular altitude
in all portions of the skip.

Thus if the vehicle returns to the outer atmosphere

after each skip Yo = = P, for all skips.

Dividing equation (5.2-3) by equation (5.2-4) we get

Ldr
L _V 375 (5.2-3)
- dV
D IE
o »d7_ L dV
v = . 2-
ds — D dt (5.2-9)
But d v _ I d vl_
dt ~ 2 ds
and thus iy
) dV©_ | ,+d¥Y
7 ds- L V 9 s (5.2-10)
D
Multiplying by ds and integrating for L/D =c¢
l dV |
v V* 577 (S.2-11)

M

V=1V

en

This defines the velocity in a skip. The 7 at various
positions in the skip 1s defined by equation (5=19)., Thus,

"“( '?‘\
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the velocity, altitude and 7 at various positions in

any skip are defined for L/D = constant.

Since
yer-) = = Ye)‘
V -27 L
& _ o "/ (5.2-12)

This defines the velocity loss in every skip in terms

r L/D
o /D since 7;n1 = 7gn2 = 7gnh .

Now we are interested in the combined effect of a
series of skips. It has been shown elsewhere that the range

#, of one ballistic phase is given by

¢n= Zt’"-‘ ) (5.2-13)

whe re Vs 1s satellite velocity at the Earth's surface,

It 1s assumed that the skipping process may be approxi-
mated by impact problem considerations where the total range

1s the sum of the ballistic trajectories,

Thus

n
=5 ¢, (5. 2-11)
}

o
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@
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5.3 Glide Re-entry.

The equations of motion (see reference 5-2) are

as before:

L_‘ m7 cos ¥ = - mr:Y (5.3-1)
—D+fh7 sin ¥ =m 3—% (5.3-2)

The angles are assumed small in the glide so that

sin ¥ ¥ ; cos ¥ 1 and the atmosphere is com-
paratively thin so that P ~ 1
ro = -°

It may be noted that

dV _ 1 dV*
dt ~ 2 ds

and from figure |} 1t may be seen that

1 _dlv=r)
.- ds

_dy_ cos® ~ !
ds ™~ r r,

Thus equations (5.3-1) and (5.3-2) may be written as

_ 1d7 mVE
vV
D=—%mig+mg ¥ (53-4) ¢
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Dividing equation (5.3-3) by eguation (5.3-4) yields:

_Looy ., alydV oty v
c;(/ > 7)"'2'(0)7‘5 V-2 ro—-O (5. 3-5)

ds

It can be shown that the terms L/D g7 and y2 47

may be neglected. The proof of this will not be consider-
ed here., (See reference 5-2)

So
2

dv* 2
ds 1

<<

+ _—Zﬁ’- =0 (5.3-6)
D

ofr

Since 2 .
V5 -7 o
equation (5.3-6) can be integrated for constant L/D to

give the velocity in non-dimensional form as

2¢/L
D

(50 3-7)

Vo=l-(I- V. )e

where Vg 1s the initial velocity divided by the satellite
velocity at Earth's surface, v is ratio of velocity to
satellite velocity at Earth's surface,

Thus the velocity in the glide path 1s defined in terms

of the 1lift drag ratio and the range.

220< -
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From the original normal force equation

L.—m? cos ¥ = — "'l.vt (5.3-8)
<
cos ¥ = 1, r, = r,, anddividing by mg
we get
L —2
L=V
or

L
L -y
V+m7

If the quantity for the 1ift is put in, there results

am CLAVs P > =/ (5.3-9)
Z.rn9

——1

/
- a (5.3-10)
2/717

Thus the veloscity is expressed in terms of the density and
thus indirectly in terms of the altitude. Using the
expression for density vs. altitude, veloclty vs. density
(5.3-10) and velocity vs. range (5¢3-7) the flight path 1s
defined,

The foregoing ecuations on the skip and rlide re-entry
were obtained from hypersonic glider re-entry considerations,

The velocity of the hypersonic glider may approach orbital
Lai<
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velocity. Recently reference 3 has been written which is
also directed toward the re-entry problem under two degrees
of freedom. Reference 3 was not available soon enough for

consideration when these notes were originally prepared.
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SECTION VI

SIX DEGREES OF FREEDOM EQUATIONS OF MOTION AND TRAJECTORY
EQUATIONS OF A RIGID FIN STABILIZED MISSILE WITH VARIABLE MASS

The study of space mechanics thus far has been restricted to a two-
dimensional analysis. For many problems however, it is necessary to use
& three-dimensional analysis. Some of these problems are; the ballistic
missile with guidance whose trajectory is constantly being changed to hit
a target; for a space vehicle with guidance devices 3 for a manned vehicle
reentry or orbit which is capable of being steered, for the longitudinal
and lateral stability analysis of any space vehicle. Thus it becomes
necessary to examine the case of missile motions and trajectories for
six degrees of freedom which are general enough to cover all phases of
missile motion, including the launch, exit from the atmosphere, space
trajectory, reentry to the atmosphere and landing phase.

The purpose of this presentation will be to perform the classical
derivation of the equations of motion of a missile with variable mass,
and then to develop the equations of the missile trajectory referred to
special sets of axes. The derivation will be for the general case of |
all six degrees of freedom.

In order to make the development more meaningful we will briefly review

some elements of vector mechanics and the matrix algebra of transformation
of coordinates. The presentation will be divided into four sections.

6.1. Review of vector mechanics.

6.2. Review of matrix algebra of transformations.

6.3. Development of the equations of motion of a missile.

6.4, Trajectory equationms.
e <
[P
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6.1. Review of Vector Mechenics
A vector is a quantity which has magnitude and direction. The
analytical shorthand of vector analysis has the advantage of permitting
treatment of directed quantities such as forces without the need of referring
them to an arbitrary set of coordinates. In the final stages of a develop-
ment, however, we usually define a coordinate system and resolve the
vectors into components along the axes.

6.1.1. Resolution of vectors.=-

4
<

A vector can be written as:
AsiAx+JAy+xA7_ 6.1=1

where 1, J and k are base vectors or unit vectors along the x, y, and
z axes respectively and Ay, Ay, and A, are the components of the vector l

A ealong the x, y, and z axes.

2u8<
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It is seen that the magnitude of A 1is

A= /sz + A2 4 a2 6.1-2

and the direction cosines of the vector ere

1=cosa=cos (A x) = A /A 6.1-3
m=cos B=cos (A y) = Ay/A 6.1k
n=cos y=cos (A, z) = A,/A 6.1=5
further
12 +mf +n2 =1 6.1-6

More will be gaid ebout direction cosines later.

6.1.2 Addition and Subtraction of vectors.- Addition and subtraction

of vectors are performed by the well known force polygon grarhical method.

6.1.3 Multiplication of vectors.- There are two types of vector

roduete

'-»Au\—vuo -ba
>

ot
3

h

roducte and vector or oross

produects - scalar or do
scalar or dot product of two vectors is a scalar quantity and not a
vector. It is defined by

A.B=ABcos (A B) 6.1-7

or in terms of components

A.B=A B +A B +A, B, 6.1-8



6=k

By means of relation (6.1-7) 1t 1s seen that the scalar products of the

unit vectors sare

1.4

u
=

i

JeJd=k.k
6.1-9

i.d i.k=J Kk

n
(@]

The time honored example of the application of the dot product is:
W=F-X 6.1-10

where F 1is a force which moves along a vector distance X and W is
work done.
The cross product or vector product of two vectors 1s a vector and

is denoted by
I X E - E 6.1-11
where the magnitude of C is given by
C = A B sin(A, B) 6.1-12

end the direction is given by the right hand rule.

al
A

>




or in terms of components

1 J k

= |Ac Ay A, 6.1-13
B B B,

> |
X
i

or

AXB= (Ay B, = A, By)i + (A, By = Ay B,)J + (A, By - A, Bk
6.1-14

By means of relations (6.1-11) and (6.1-12) it is seen that the

vector products of the unit vectors are

-

1X1=JXJ=kXk=0

iXjma=Jxi=k

k 6.1-15
JXk=akxj=i

kXi=<31xXxks}

J

An exemple of the application of the cross products is
T=RXF 6.1-16

Where ; is a force acting on a particle whose radius or position vector
is E and E is the torque or moment of ; about an axis through the
origin and perpendicular to the plane of R and F and directed by the
right hand rule.

?\
o
o>

A
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g |

] |

<
=1

Another example of the vector cross product is:
V=wxR 6.1-17

where « 1is an angular veloc:lty’ R 1is a position vector and V is a
linear velocity. As indicated previously, V is given by

A 1 3 k

ReRy R

|

or V= 1(R, a = Ry o) + J(Ry w, = Ry wy) + K(Ry ay = Ry ay)
6.1-19

or VaiVy+dVy+kV,
6.1.4 Momentum.- Momentum of a particle of mass m is defined as:

UsnV 6.1-20

where U is a vector which has the direction of the velocity vector v

and therefore from (6.1-=17) it is seen that

A,
<qe<
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Us=smn (o X R) 6.1-21

6.1.5 Moment of momentum or angular momentum.- The moment of

momentum or anguler momentum H is simply the moment of the momentum
vector about a given point or axis through that point. From equation

(6.1-16) we see that the moment of a vector about a point is simply the

radius vector R of that vector crossed into the vector U.
Therefore:
H=RxU 6.1-22
and by (6.1-21)
H=RX (xR m 6.1-23
For later use we note that
[Ax 3x®))=5-G-8-FGE- 3 6.1-24
and
P L L o o_ _ _
Rx(wxR|=w(R*R -R(R*w) =R o-R (2§
6.1-25

6.1.6 Vector operators: Gradient operator:- The operator V

(the gradient or del) 1s defined by

VEi——-l-J——-l-k-a— 6.1-26
x oz
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Vo=1 22 +J 0P +k 0P 6.1-27
ox oy oz
Vo 1is the gradient @ or del ¢
An example of an important scalar field is the gravitational field.
Consider the potential ¢ due to a concentrated mass, m, in the earth's

gravitational field, namely

km
¢ ? 6 . 1-28

where r 1s the distance from the center of the earth to the mass.

Then .1-“., the resultant force, is given by
= ) 9
FeVp=1gi+ygl+k 3% 6.1-29

or the gravitational force is the gradient of the gravitational potential.

To show this we note

rs= \jx2 + ya + 22 6.1-30
and
or _ X = X 6.1-31
dx Vx2+y2 +22 r
99 . 92 . dr . - M
am = . B - * é 601- 2
dx Or Ox rée r 3

6.1=33

H <




99 _ 3¢ 9, _im 2z 6.1-34
dz Jdr Oz ré r

+ (g—;’)e +(g-3)2 = - :.1‘7-%1 6.1-35

\._./m

and F= \/(@_;1:

Thus, if the mass m 1is in the gravitational field of many other bodies

kim kom kam
whose potentials were defined as @) = —; Pp = —; P5 = ——; etc.
r r r
1 2 3
then the total potential would be ¢ = P+ P+ P33+ ccccnccaa e

ani the resultant gravitational force would be

F=Vg
Other vector operators not used in this development are mentioned here

merely for the sake of completeness. The curl of a vector is:

1 J k

< d J d
1A= =2 2 6.1-36
o ox dy oz >

A Ay A,

md the divergence of a vector is:
— oA, a% OA,

div A = TR IR 6.1-37

b}
y:. n
1
A
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6.1.7 Time rate of change of a rotating vector.-

R
A

-

2R
% dR

= (g x R)at
R
From the diagram it is seen that the vector dR 1is the vector sum

of a component OR along( R + Bﬁ)and a component L. to (R + bﬁ)

equivalent to (;’R X R)dt

dR = 3R + (:‘h x R)dt 6.1-38
OR

AR OR -

dt ot (ug R

This 18 the well known transformation for the rate of change of any

vector R from fixed to moving axes where g% is the rate of change of

R measured with respect to moving axes, and wg is the angular velocity

of the moving axes with respect to the fixed axes.

o
pn B
op!

A
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6.2 Matrix Algebra of Transformations
In this section we shall deal only with rotational matrices., A
rotation matrix performs an orthogonal transformation on some quantity
such as a vector or set of vectors. The coordinate systems considered
are Cartesian and are "right-handed" systems.
Orthogonal matrices, which perform only rotations (also called
rotation matrices) have special properties. We will discuss some of

these properties.

6.2.1 Single rotation.- We start with a set of axes Xy Yy 2y

as shown below.

. %
> Xy cos ¥ ~~

W

& 2

XN sin ¥ YN sin ¥

Zyy 2y

By rotating the system about the Zy axis through an angle ¥ Wwe obtain
a new coordinate system which we shall designate (Xl Yy Zl)' The trans-
formation or relation between the original and new system is obtained by

geometry and is seen to be

r ] o

X1 { cos ¥ sin y O |Xy

{1} = |- ein y cos y 0 {Yy 6.201
2y 0 0 O |zy

. - \

£y
<3<



=12

This transformation is called an orthogonal transformation. The elements

are called direction cosines, since each element for instance

, COs ¥

is the cosine of the angle between Xy and X;. The element sin ¥ is
the cos (90 - y) the angle between Yy and X; and the element - sin y
1s the cos (90 + ¥) the angle between Xy and Y. Actually each element
of the matrix can be considered the scalar product of two unit vectors
having the directions of the indicated axes.

If we let

cos ¥ sin ¥

[T (vyﬂ = |- 8in y cos ¥y O 6.2-2
0 o 1

/
and denote the transpose of [‘1‘ (v)] by [T (v)] and denote the inverse
of I?I‘ (v):l by [’I‘ (vjy):l'1 and define the matrix [T (- v)] as that matrix
obtained by replacing (y) by (- %) in [T (v)] then the following property

is noted

cos ¥ -sin ¥ O

/
[r (0] = [T (¥)] T (- ¥)] =|stny cosyof 6.2-3
0 o 1

Stated in words the transpose of [T (t)] is also its inverse and is also
the matrix obtained by replacing (y) by (- ¥). Applying this principle
to equation (6.2-1) we get

XN -cos v -s8iny 0.1 Xy

Yyo= [sih ¥ cos ¥ O| <Y, 6.2-4

ZN o o 1| |2z
I

¢ . &30
&ﬁ@“
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} . 6.2.2 Two rotations.- We originally started with a set of axes
| XN Yy 2y and rotated about the Z, axis through an angle ¥ to obtain
& new set of coordinates (X, Y; Z;). Let us now rotate the XY, 2y
system about the Y; axis through an angle O +to the new coordinate

system X5 Y, Z, as shown below.

From the geometry of the problem the transformation between the X, Y, 24

system and the X, Y, Z> 1s seen to be

Xa\ 1:05 0 0 -8in © rXl
Y2 ) = o 1 0 -{Yl 6.2-5
Z2/ -sin 80 cos Gj Z1
or
(v )
Y2 = [T (9)] Yl 6.2'6
Zef a1
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Combining equations (6.2-6)and (6.2-1) we get

Xo XN
Yo = [T (e)] Er(\y)] Yy 6.2-T
%2 N

This equation implies the rotation ¥ is performed first on Xy Yy Zy
followed by the rotation 6 to determine the new coordinates Xy Yp Zp.
In order to return to the Xy Yy Zy coordinates from the Xp Y, Zp
coordinates, from & consideration of the geometry we would rotate first

through a (- 8) then through a (- y) or

Xy X
Yo = [T (- y)] Er (- e)] Y, 6.2-8
7y Z

By making use of equation (6.2-3), equation (6.2-8) could be written as

XN X2
i [r 0] 0] 2 6.2-9
5 Z2

By taking the inverse of the trensformation matrix in equation (6.2-7) we

can write
o) -1 £
Yy )= Er (e)] ['r (v)] (Y2 6.2-10
() 2

'8
o1

-

A
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A comparison of equation (6.2-10) and (6.2-9) indicates

[[T (e)] ['r (w)]]'l = [T (v)] -1 [T (e)] -1 6.2-11

‘Stated in words equation (6.2-11) csays the inverse of & product of orthogonal
transformation matrices is the product of the inverses of the individual
matrices teken in reversed order. This is the reversal property of

orthogonal matrices.

For subsequent use we note that equation (6.2-5) may be stated

Xy [ cos 8 O sin 6 [%2

Yi8=] o 1 o |{v.} 6.2-12

Z -8in 8 0cos 8 |25

6.2.3 Three rotations.- We began with a set of axes Xy Yy 2y anmd
rotated through an angle ¥ to obtain the set of coordinates XY 2
which we rotated through an angle 6 to obtain the set of coordinates
Xo Yo Zo. let us now rotate the X> Yo Z, system about the X, axis

1eW coordinate system which we shall

)
<3

designate (x, yp zp) as shown below

o *°

(53

790
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From the geometry we see

- T r T
Xp 1l 0 0 Xo
Yp = |0 cos @sin 9| ¥} 6.2-13
Zh LO - 8in 9 cos @ LZQ
or
Xb Xo
Ypi = [T (cp)] Y, 6.2-14
2y 22

Combining equations (6.2-1), (6.2-5) and (6.2-13) we get

Xp XN
Yop = ['I' (o)] [T (e)] ['r (v)} Yy 6.2-15
2, Z
and inversely
fo xb
-1 -l -1
{Ty )= [T(w)] [T(e)] [T(cp)] Yo 6.2-16
LZN “
or
- 1r W - 117 9
XN cos y - sin y O cos 80sin o} il O 0 Xy

Yy )= |siny cos ¢y O o 1 O O cos ¢ - sin @| Jyp )

Z§ 0 0 1 L-s:Ln © cos 8 |0 sin @ cos @| |2y
L J 4 L

) N 602-17
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6.2.4 Direction cosines.- The terms lle mlJ ;nlJ are called

direction cosines and are defined from equation (6.218) as
177 = cos y cos ©
110 = sin y cos 8
113 = - 8in 8
m;; = cos y sin © sin @ - sin y cos @
mys = 8in y sin 8 sin @ + cos ¥ cos @ 6.2+21
myz = cos 6 sin @
nj) = cos y sin 6 cos ¢ + sin ¥y 8in @
njo = sin y sin 8 cos ¢ - cos y sin @

n)3 = cos 6 cos @

Some interesting relations between these direction cosines or between the .

directive cosines of any orthogonal transformation are the following

2 2 2
lll + m3y + D013 = 1

2

2 2

2 2 2 .
113 + m 3 + D5 1
11 Wip + @) Mp + Ry By =0
113 111 + m13 my, + nl3 n,, = 0
1112 + 1122 + 1132 = ]

mna + m122 + m132 = 1 6.2-24

nlla + “122 + n132 = ] .

2
(o4
L

A
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111 m3 + p Mo + 13 mz = 0
m11 n1) +mp Njp + m3 n)x = o 6.2-25

nll le + nlz 112 + n13 113 =0

and

131 L2 i3

L}
[

my] myp m3 6.2-26

n) ma2 n13

The three rotations from XNy Yy Zy through ¢, 8, and ¢ to Xp ¥b 2p
are indicated on Figure 1. If p, q, and r are defined as the angular
velocities sbout the xp yp 2p axes, then from Figure 6-1 it 1s apparent

that

p=Q- i sin 6
q= 8 cos P + ; sin ¢ cos © 6.2-27

r = @ cos 0 cos @ - é sin @

Tn order to get the weight component into the equations of motion
(which we will indicate later) the direction cosines must be computed.
Cn an analog type computer, however, the direction cosines are generated
by using the derivative forms of the direction cosines which are

ll,j =mlJ r -nlJ q

[ ael

Ty =My Q- 113 r where j=1, 2, 3 6.2-28

flld = l:l,j q"'mlJ r

&N

oy

1
A
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These relations are not developed here but may be demonstrated individually
in the following manner.

Referring back to equation (6.2-21) it is seen that
1y, = cos § cos 8 6.2-29
and differentiating we get
ill = - cos y 8in 8 8 - sin y cos O ; 6.2-30
From equation (6.2-28) it is seen
ill =myTr-n3] 9 6.2-31

By substituting the values of r and q from equation (6.2-27)
and values of mj; and nj) from equation (6.2-21) into (6.2-31) and

performing the indicated multiplication and reduction we get
1 = «cos ysin® 8 - sin ¥ cos 6 ; 6.2-32

which is identical with equation (6.2-30).
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List of Symbols

right-hand Cartesian coordinate system fixed in non-
rotating earth, inertial axes (with Zy positive down)
angles used in specifying missile attitude referred to
as Euler angles (specified order of rotation ¥, 8, 9).
body axes - right-handed coordinate system fixed in
missile body with the origin at the instantaneous center
of gravity. (See Figure 2.)
angular velocities of body-axis system (xy, yp, 2p)
positive clockwise when looking in positive direction
of axes
components of resultant velocity V along body axes
Xbs; ¥Ybs 2Zps respectively
unit vectors along the Xps» Yp, &nd  z, axes respectively
unit vectors along the XN, Yy, and Zy axes respectively
resultant velocity of missile center of gravity
resultant angular velocity of missile or (xy, Ybr Zp)
system ; = 1pp + Jpq + kpr
Jet exit velocity relative to nozzle exit
Momentum of missile U = oV
momentum of missile and Jet
missile mass (slugs)
angular momentum of missile with respect to the center
of gravity or moment of momentum

angular momentum of missile and jet



L, L, L3, Iy

6-22

time after missile separated from lawncher

resultant jet thrust

resultant jet thrust for the special case when the
thrust is along the x axis

resultant jet vane force

resultant aerodynamic force

resultant reaction control force

resultant external force acting on missile

resultant jet thrust moment about center of gravity

resultant jet vane moment about center of gravity

resultant aerodynamic moment about center of gravity

resultant reaction control moment

resultant external moment acting on missile

1ift force on jet vane

air density

jet pressure at nozzle exit (gage)

nozzle exit area

distance from missile center of gravity to nozzle exit

aerodynamic force coefficients referred to body axes

aerodynamic moment coefficients referred to body exes

missile cross-sectional area

representative missile length (diemeter, chord length,
length, etc.)

distance of jet vane lift forces behind center of

gravity

O8<
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ry, rz distances from x axis to jet vane 1ift force
W missile weight, pound
A azimuth angle of velocity vector measured with respect

to the Xg, Yg, 2 axes (+ from south to west)
y elevation angle of velocity vector with respect to

the Xg, Yg, Zg axes (+ up)

a angle of attack
B angle of sideslip
X, Y, 2 right-hand Cartesian coordinate system fixed in non-

rotating earth with 2 positive pointing north

Xy Yo, Zg right-hand Cartesian coordinate system fixed in rotating
earth

Xg, Yg, Zg Geographic axes

e angular velocity of earth (rotational velocity)

A longitude

L latitude

h distance above earth's surface

Ro radius of earth

A4 wind velocity with respect to inertial axis

Ve velocity component of earth's atmosphere

Va resultant aerodynamic velocity

v velocity of missile center of gravity

l, my n direction cosines

Ba aileron deflection

5p rudder deflection
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be elevator deflection

81, 82, 53, By jet vane deflection

I, Iy, I, missile moments of inertia about xp, yp, a@nd 2zp 8xes
respectively

Ix-f(y2+za)dm
Iy-f(22+x2)d.m

Iz-f(x2+y2)d.m

Iyz: vz Ixy missile products or inertia about Xy, Yy, and 2z} axes
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6.3 Derivation of Equations of Motion

The gecmetry is shown in Figure 6-1.Two sets of Cartesian coordinate
axes are used in developing the equations of motion. One set is fixed in
~the body and is known as body axes and is shown in Figure 6-2.The body axes
we designate as xp, yp, and 2p. The other set is fixed with respect to
the earth and is known as inertial axes which we designate as XN’ YN, ZN’

The orientation of the body axes with respect to the inertial axes
is defined by three angular coordinates ¢, 8, and ©® which are called
Fuler angles, These angles are shown in Figure 6-1. The rotations must be
frken in a certain specified order namely : , 6, and o.

Further definitions of pertinent quantities are given in the 1list of
symbols. In appendix A some of the formulas pertaining to the development
are listed. An attempt has been made to use the standard NACA symbols
throughout although in certain cases this was not possible.

A schematic diagram of the missile is shown in Figure 6-3. The o
vector represents the resultant angular velocity of the missile or
Xps Yps» %ps 0ody system.

The equations of motion will be derived by writing the rate of change
of momentum and rate of change of angular momentum equations.

6.3.1 Force equations.- From Newton's law we have the equation:

av -
(Ti-t—T> = F 6- 3"1
) N

XY

o}

S
A
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The rate of change with respect to inertial space of momentum of the missile

and jet can be written

a U au - = = = ,
(J> = (—) +m(V + 0 X re - Ve) 6.3-2
at /o \dtg

Since U is referred to the Xps Yps Zp System which 1s rotating with an
angular velocity o (see Fig. 6-3) with respect to inertial space the rate

of change of U with respect to inertia space is

du U - =
— EJEr——— U 60 -
(dt>N t tox 3-3

as indicated previously in section 6.1.

By differentiating the momentum

U=nV 6.3=k4
and defining dm .. m we get
it
W, a4y 6.3-
dt.mdt mV «3=5

If we substitute equations (6.3-5), (6.3-4), and (6.3-3) in (6.3-2) we get

(%I) am%;ﬁv+m(“-“xv)"";‘(V"’;x;e"_’e) 6.3-6
N
which reduces to
a U av - - - - -
__'_r) =m— +m{wx V) +b(oxre) - ive 6.3=7
dt dt
N
Since _
dv o . .
= Vip+vip+tViy 6.3-8

262<




and

and

and

@ = pip +gq Jp +r kb 6.3-9

Te = rex 1y, + rey Jp + rez ky 6.3=10

P g r |=1p(vg = vr) + Jp(ur = wp) + kp(vp - uq)

u v ow - 6.3-11

® X Te = ip(Te, q - rey ) + Jp(re r - re; p) + kp(re, p - re, q)
Y X y X

6.3-12
. ' w> have (substituting equations (6.3-12), (6.3-11), and (6.3-8) in
(6.3-7)
a Up) . )
<—d€_/N = {m(u +wq - vr) +m(q Te, = T I‘ey)} i, +

{n(\'r +ur - wp) + m(r Tey = D rez)} o +

{m(v’r + vp - uq) + mp Te, - qrex)}kb -mVe=F

6.3-13

which is the force equation.

6.3.2 Moment equation.- The moment equation about the migsile center

of gravity is

<%> - M 6.3-14

- a

o

wad
A
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The rate of change with respect to inertia space of angular momentum
of the missile with respect to the center of gravity including jet effect

is

d o PR - - -
<_F.T.> = (gﬂ> +mre X (wX re = Ve) 6.3-15
where - _
dgH) aH = _ =
Py B — X 6. =16
(dt )N ag texH >

From the definition of angular momentum we can write

ﬁ=f§x(;x§)am 6.3-17
where

Rexiy+y Jp+2ky 6.3-18

The triple vector product as indicated previously (equation (6.1-25))

can be written

Rx (X R) =R o - R(R * w) 6.3-19
where
R = (x2 + y2 + 72) 6.3-20
and
o=pip +qdp +T Ky 6.3-21

Substituting equations (6.3-21), (6.3-20), (6.3-19) and (6.3-18) into

equation (6.3-17) results in

E-f (x2+y2+2%) (pip +qJp +T kp) -

6.3-22
(x 1p + ¥y Jp + 2 k) (px+qy+rz)} dm

“6d<
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By performing the indicated multiplications equation (6.3-22) can be

expressed in the following form

H= pf (y2+2.2)dm-qfxydm-rfxzdm}ib+
{qf (za+x2)dm-rfyzdm-pfxyd.m}.jb+ 6.3-23
{rf (x2+y2)dm-pfxzdm-quzdn}kb

end by introducing the usual definitions of moment of inertis =ni product

of inertia shown in the 1list of symbols we finally get

is(pr-Ixyq-Ixzr) ib+(Iyq-Iyzr-I,q,p) Jp +
(Izr - Iz p - Iyz @) kp
6.3-24
It 1s usually conventional in missile work to choose the body axes as

the principal axes so that

Ly = Iyz = Iy = O 6.3-25

thus we have the final expression for angular momentum

The rate of change of angular momentum is obtained by differentiating

(6.3-26) and becomes

dJ_I - . . . . )
-a;=(pr-pr) b+ (Iyq-Iyaq) Jp+(Iz r - I, r) K

6. 3-27

P

op

1
A



The product o X H 1is

prI.quzr
= (I, - L) rady + (L= L) prJp + (L - I ap by 6.3-28

Similarly the thrust term becomes

BT X (3 X To = Vo) = [re2 & = FolFe - @ A
6.3-29

= m{(re2 + 12 +1g2) (P iy +adp +T Ky -

X y z
(rex iy + rey Jo + Te, ky) (rex p + rey q+Te, r)} - .
mre X Ve

By performing the indicated multiplications, equation (6.3-29) can be

expressed in the following form
ﬁ:?ex(Bx;e-Tre) -ﬁxp(rea+ree)-re(qre +Trre )y ip+
y z x y z
[ ]
n:{1(rez + rei) - rey(r Te, + P rex)} I +
m{r(re2 + re2) = re (P re, + q Te )}kb-
x y "2 x y

—

meXVe

6.3=30

«56<
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Finally by substituting equations (6.3-30), (6.3-28), (6.3-27), (6.3-16),

and (6.3-15) into equation (6.344) we get

Hn)
d . .
(%T'/N=[Ixt"(1y‘xz) qQr - Ix p +

. 2412 - +T il 1, +
m{p(rey + 1) re (a Tey Te, | b
[Lyé-(IZ-Ix) rp-Iyq+

. 2 2 6.3-31
m{q(rez + rex) - rey(r re, + P rex) Jp +
[Iz;'-(Ix-Iy) pq-Izr"'

xn{r(re)?c + res) - rez(p rex +q rey)} Ky =

BT XV, -

6.3.3 External force and moment systems.- The resultant external force

F 1s the sum of the aerodynamic forces, the gravitational force s the control
forces acting on the missile and the force caused by the jet pressure at

the nozzle exit or

F= FA + FG + FC + Ae Pe 6.3=-32

The resultant moment M 1is due to all the forces listed above except

the gravitational force which has no moment about the center of gravity.
M= My + Mg + Te X Ag Pg 6.3-33

6.3.3.1 Aerodynamic forces and moments.- The aerodynamic forces

and moments along and about the principal axes are defined in the con-

y

! ~
- .

4

ventional manner as follows: - ,?
' [

¢
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*z
"
Q
R
14!
o
o

and

2
M, = Cy 85V~ 1

o

nio

s va2 1 6.3=35

'y = G

M, = Cp 25 Vg2 1

where C,, Cp, anl €, are the moment coefficients which give the moments
about the missile center of gravity.
We can further specify that each aerodynamic coefficient is a function
of the variables B8, a, é, a, P, 9, and r such that:
Y l
C,==-C =C -Cy, (&) -, (X
- Xq &7 X (2v) Xq (2v)

X0

. (Bl pl rl
y = Cys B+ cyB (EV) + Cyp (EV) + Cy, (EV

B e - Y il- - gl
Cs CZo cza * cza (2V) Czq (QV)
6.3=-36

B1 pl ri

C,=C +C, (=) +C =) +C =

1= Cig B+ g (2v lp (2v) I (ev)
al ql

Cn

. (Bl 1 ri
Cng B + Cng (BD) + Cny (B + Cn, ()

£68%




Definitions of a, B, and Vg will be given later in the development.
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6.3.3.2 Gravitational force components.- The components of the

weight term which we included in the equations of motion are computed from

the transformation equation between inertial and body axes (which was

developed in section 2) and are

or

where g = g, (

r ‘} r i T G
W, 111 Lz U©i3| |©

Wy, b= |m11 mp my3| {0 5

szb nj) mpe ny3 | (W

P -LJ

W 1.z W= 1 1 (R° ¥
xp = 13 13 13 °Ro+h)_
R, \2
Wy, = 013 W = m3 mg = m)3 mgo
Ry +h

=
n

2
n W=n mg = n mg, _Ro
% 13 137 13 ™o (Ro + h)

Ro
Ro + h

2
) and go = 32.2.

6.3-37

6.3-38

It should be noted that although these weight components are the

ones usually used, they are approximations based on the flat earth concept,

since they neglect the nonparallelism of the gravitational attraction at

different points of the earth's surface.

weight components will be specified later in section 6.4.

~538<

The true gravitational force or
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6.3.3.3 Control forces.- The control forces, of course, depend on

the type of controls used on the missile. For purposes of this dis-
cussion we shall assume the missile is equipped with three types of
controls. (See Figure 6-2.)

1. Conventional aerodynamic controls

2. Reaction controls

3. Jet vane controls

The resultant control force and moment equations can then be indicated as

Fo = Fg + Fg + Fy 6.3-39
and

Mc=§5+ﬁﬂ+ﬁv 6.3=40

The conventional aerodynamic controls are considered to be ailerom

5y, rudder B&,, and elevator B&g. The components of these aerodynamic

forces and moments caused by these controls are assumed to be the following:

Fy =C, =SVg & 6.3-41
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and

- P 2 P
Ci 23S Va® 185 +Cy 55 V.2 18,
a 81‘

= e 2
My =C. =SV 6.3=42
5y mae > a- 1% 5
Mg, = Cnﬁa g S Vg2 184 + Cng g- S Vg2 15y

The reaction controls are sssumed to be force and moment components

along and about the missile principal body axes of magnitudes th, FRy,
F M and .
R,? ’ ng: MRz

6.3.3.4 Jet vane controls.- The jet vane forces and moments are

considered on the basis of the vane arrangement shown in Figures 6-4 and 6-3.
The components of the total jet vane force acting on the missile are

assumed to be the following:

- (total drag of all jet vanes) =

o]
<
"

Fy, = (5 + @) = (3 65 + 3 5,) = 5 48 (55 + 8 6.3-43

The components of the total jet vane moment about the missile center of gravity

are



aq

= 55 6.3=bk
ds 4%

e Re 1 8
", Ls 3 03 35 v

where L1y, lp, Lz, and I are the distances of the jet vane lift forces
behind the missile center of gravity.
Other possible types of missile control not detailed here are control

by means of a swiveled or gimballed rocket and control by use of Vernier

engines.

6.3.4 Equations of motion.- The equation of motion due to rate of

v _
(-Jg =F 6.3.1
at/ g

becomes (where m V; 1s added to both sides of (6.3-1)

change of momentum

d’ﬁT ¢« - — - -~ -—

—| +mVe=FpA+Fg +Fc +Fg 6.3=U45
dat /'y

where
Fy= Ay Py + m V, = Jet thrust © 6.3-U6

The equation of motion due to the rate of change of angular momentum

()
i M

= 6.3=14
Ty 3

s
PR

‘/
~ 0 Ay
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vecomes (where m (;é X V;)) is added to both sides of equation (6.3-1k)

aBp\ . - - -

<—d-%— +m(re><Ve)=MA+MC+MJ 6.3-’47
N

where

MJ = ;; X (Ae ;e + é 3;) = Jet thrust moment about the c.g.
6. 3-)45

Equation (6.3-45) resolved into its components thus generates the following

three algebraic equations.

m (0 +wq = vr) +m (g Te, =T rey) = Fp + Wy + Fc_+Fg

6.3-49

m(v+u -wp) +m (r e =P rez) = FAy + Wy + Fcy + Fﬁy

60 3"50

m (w + -ug) +m r, -qr, )=F, +W, +F~ +F
( vp a) (p ey q e, A, z C, J,

6.3-51

Equation (6.3-47) resolved into its components generates the following

three algebraic equations

. : . 2 2 \
I,p (Iy I,) ar - I,p + m{é(rey + rez) + rex(q rey +r rez{}

=My + M + My 6.3-52
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. M * N
1 - (T, =X rp - I + nla(ra + ra8) +r, (rr +pra. !
ya ( 2 x) P y q {Q( e, ex) ey( e, P ey }

= M . «3=53
f'Ay+ij+MJy 6.3=57 .

T,r - (I, - Iy) rq-I, r+ é{%(rei + res) + rez(p rex +q rey{L

Ma, * Mo, + My, 6.3-5k

In order to simplify the equations of motion the following assumptions
are made, It is assumed the jet exit velocity relative to the nozzle exit

fs alcng the x, axis, that is

Ve = ixb Ve
or 6.3-55
Ve, = Ve, Ve = Ve =0
y
and -
P = ixb Pe 6.3-56
then
or
rey = rez = 0
then
Fj, = A Pe +m Vg = T 6.3-50
further
FJy = FJz = My=0 6.3-59

With these simplifications the six equations of motion become

€« r™; i -
o €54
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m(u +wq - vr) = T + Wy + Fa, +Fc, 6.3-60

m(V + ur - wp) - & rer = Wy + FAy + Fcy 6.3-61
m(w + vp - uq) + 1 Teq =W, + FAz + FCz 6.3-62
Ix; - (Iy -I,) ar - ixp =My + Mcx 6.3-63
Iy& -(I; - Iy) rp - iyq +mqre2 = MAy + Mcy 6.3-64
Iz; - (Ix - Iy) pq - izr +m rre2 =My, + MCy 6.3-65

By substituting the components of the aerodynamic force and moments,
the weight components and the control force components derived earlier
into equations (6.3-60) to 6.3-65) inclusive we arrive at the final set of
equations of motion of the missile with variable mass shown on the following
rage. The equations of motion for coasting flight or the (no thrust) con-
ditions are also indicated on the page following.

6.3.5 Remarks on solution of equations of motion.- The six equations

of motion {6.1) and {6.6) contain six unknowns u, v, W, p, q, and r
If the solution is performed on the analog, three more equations are added
which generate the direction cosines needed to include the weight term in
the equations of motion.

i13 =m3r-mnsz3q

mz = Nz p ~ ljz r 6.3-66

nyz = 113 q - m3 p
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The Euler angles y, 6, and ¢ which specify the instantaneous
missile attitudes can be determined from the equations (6A-2) given in

appendix A which are

. 1

¥ = (q 8in @ + r cos o)
cos O

De
]

qcos 9-rsin @ 6.3-67
@=p +tan 0 (q sin @ + r cos )

6.3.6 Remarks on choice of axis system.- Principal body axes have

been used in this development of the equations of motion; however we could
equally as well have chosen stability axes or wind axes. Each set has 1its
inherent advantages and disadvantages.

Choice of body axes offers the advantage that the mechanics of the
problem are simplified by the elimination of products of inertia and their
rates. The disadvantage of principal body axes is that the aerodynamic
coefficients are sometimes difficult to determine in this coordinate
system and the true weight or gravitational component is difficult to
incorporate in the equations. The weight term is usuelly approximated.

Stability axes (see x; 1in Fig. 6-6¢) offer the advantage that
the serodynamic coefficients are easily specified. They have the dis-
advantage that products of inertia and their rates must be known and the
weight component is difficult to incorporate in the equations.

Wind axes are used frequently since the force equations are easily
written for this axis system and the weight term is easily incorporated.
The moment equations however have moments of inertia and products of inertia

which vary not only with the time varying mass, but also with respect to the
. body sttitude in the wind axes.

78
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6.4 urajectcry Equations

The path of the missile center of gravity with respect to a given
set of coordinates represents its trajectory in those coordinates. In the
development of the missile equations of motion, we defined two sets of
axes (xp, Yo, zb) body axes and (Yy, YN, Zy) 1inertial axes.

6.4.1 Inertial axes.- The trajectory of the missile center of

gravity in the (XN, YN, ZN) inertial axes cen be computed in several ways,
one of which is the following. From a solution of the equations of motion
(6.3-60) to (6.3-65) time histories of (u, v, and w) are cbtained. Using
the transformation defined in equation (6.2-19) we-can obtain the velocity

components along the inertial axes from

r - r
VXN u
JVYNL = [T]_] (v 6.4-1
VZN w
L J \

and an integration of VXN’ V&N’ and V, , with the proper initial ccnditions

Yields the trajectories XN, Yy, and  Zy. This operation is indicated by

-

Xy VXN
Pntegratiné] J

YNt = Matrix VYN’ 6.4=2
ZN VZN
\  J

Since further information of a missile trajectory may be desired
such as latitude, longitude, and attitude of the missile with respect to a
stable table or stabilized platform we define some new sets of axes to yield

this information.



6=kk

If we consider the inertial axes (Xy, Yy, Zy) fixed in the non-rotating

earth as shown in the following sketch

\ .
—
Zy
we note that the earth would rotate about the (- Zy) axis using the right-
hand rule. We would prefer to have the earth rotate about the (+ 2) axis;
therefore, we define a new axis system (X, Y, Z) such that the (+ 2) axis

goes through the north pole as shown in the following sketch.

Z
A

X

The (X, Y, 2) axis is obtained from the (Xy, Yy, Zy) axis system by &
rotation of 180° about the Yy exis. The transformation between the

(Xy, YN, 2n) and (X, Y, 2) axes is

RSO
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-~

X -10 0| |Xy

Yi= | 01 ofl¥y 6.4-3

2 00 -1 |2y

.

This mey be obtained by letting 6 = 180° 1in equation (6.2-5). Equation

(6.4=3) may be written as

X XN
Y= [Th] Yy 6.4l
2 2y

6.L.2 Moving earth axes.- The earth rotates at an angular velocity

we. If we let the angle
H=w t 6.4-5
and define a set of axes fixed in the rotating earth as (X,, Yo, 2Z¢),
then at a given time the (Xo, Ye, Ze) axes would be oriented with respect to
the (X, Y, Z) axes as shown in Figure 6-6a.

The transformation between the two sets of coordinate systems becomes

Xe cos H sin H O' XT
Yer= |»msinH cos H 0O|{Y f 6.4-6
Ze 0 o 1f |z
or T
X
et |4y 6.4-7
Ze 2

,,.
Ve
per

A
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6.4.3 local geographical axes.- A right-hand set of Cartesian coordinates

(Xg, Yg, Zg) 1s defined as shown in Figure 6-6 such that the Zg axis is

always pointing toward the center of the earth and the Xg axs points

-south. The local geographical axes can be obtained from the (Xe, Ye ) Ze)

moving earth axes by the following three rotations

(1) Rotate (Xe, Ye, Ze) 8bout Z, through the angle A to obgain

the new coordinate system (Xl, Yy, Zl).
(2) Rotate (X1, Y1, Z;) about Y,
the new coordinate system (Xp, Yo, 25).

(3) Rotate (Xp, Yo, Z,) about Xp

through the angle of X to obtain

through the angle 180° to obtain

the new set of geographical axes, (Xg, Yg, Zg)

These three rotations are similar to the three performed in section 2

where y =\, 8 = f, and ¢ = 180°. The transformation which results from

these three rotations on (Xe, Yo, Z) to obtain (Xg, Yg, Zg) (which 1s

similar to that of equation (6.2-18)) is

Ze (- sin £) 0

or

Hg gs (sin A)

« 8::-, «
o C 200 =

rxJ E:os A cos £)@in N) (- cos A sinX)-
Yo} = l6in A cos ;O (- cos A€ sin A sini)

(-cos X)

-

Xg - (cos N cos X) (sin N cos D¢ sinf)q Xe

(- cos A) 0

Zg S— cos A sinof)(- sin A sin of)(- cosj)

()

AU

6.4-8

6.4-9
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we can write equation (6.4-9) as

Xg Xe
Yg o= ['13] Ye 6.4=10
Zg Ze

in order to define the transformation matrix IEP3]

6.4.4 Latitude, longitude, and altitude.- Time hiétories of latitude,

longitude, and altitude are derived from time histories of Xey Yo, and Z,.
The angles used in specifying the attitude of local geographical axes
are A, the longitude and f, the colatitude. If the latitude is designated
by L, then

L=9 -F 6.4-11

The geometry of the problem is illustrated in the following sketch

Ze
A
N
/ o
~17
t L Ye Ze 7 - Ye
A Xe
2, /
Ooo)

>-
@
(o]

A
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From the geometry of the problem the following relations are obtained.

(R + h) = (Xe + Ye2 + Ze2

6.4-12
Xe = sin (90 - A)
(Ry + h) cos L :
or
Xe = (Rg + h) cos L cos A
Y 6.4-13
L = cos (90 = A)
(Ro +h) cos L
or
Ye = (Rg + h) cos L sin A
Ez%h—) = sin L 6.4=1k
or Ze = (Ro +h) sin L 6.4=15

From equations (6.4-15) and (6.4-12) we get the relation for the latitude L

which 1is

4

L = sin~} e 6.4-16

,/ 2 2 2
Xo© + X, + 2,

Dividing equation (6.4-1l4) by (6.4-13), we get the relation for longitude

which is

A = tan~l -}Y{—:- 6.4-17

The velocity vector of the center of gravity is oriented in the

geographical axes by the azimuth angle A and the elevation angle 7.

&<
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The azimuth angle A 1is the angle in the Xg, Yg plane measured in the
positive direction from south to west; in a physical sense it is our compass

angle plus 180°. The elevation angle y is measured + up. From the

geometry it is seen
ng =V cos y cos A
VYS =V cos y sin A 6.4-18
Vzg =V sgin y

from these relations we get two expressions for A and vy

Yy

tan A = —8 6.4=19
Vx
g

and

V2

£ 6.4-20
v

Time histories of A and 7 can be computed from equations (6.4-19) end

sin y

(6.4-20) if time histories of Vxgr Vyg» end V74 6re knom. From equations
(6.4-1), (6.4-k4), (6.4-7), and (6.4-10) we can write

%kg (u\
AL ['13] ['ra] I:m] [Tl]4 v} 6.4-21
;vzg \w /

which permits the computation of the needed Vx » Vy , and Vz . V 1is computed
g g g

from

V. /vxga + ¥y 2 evy 2 6.4-22

RES<
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In summary, the geographical set of axes was defined in order to
specify the attitude of the missile with respect to a stabilized platform.
The attitude is given by time histories of A and 7. The specification .
Y

of moving earth axes X 7, permits the computation of time histories

e’ “e’ Te

of altitude, latitude, and longitude. The local geographical axes are the
same as the earth axes defined in ASA Y10. 7-195hL.

6.4.5 True weight component.- From Figure 6-6c it can be see that

the true weight component W acts along the Zg axis. The true weight

components in body axes may thus be given by

r~ ﬂ (
L 111 12 13| |- Wecos L cos (A +H)

.

wwyb L, = |mj] mp M3 W cos L sin (7\ - H) 6.4=-23

J L

W nll !112 nl «Wsin L
[ 1

where the direction cosines 11J: mld’ and nl'j are defined in section 6.2
equation (6.2-21).

6.Le6 Definition of Va,, o and B.- The velocity vector Va which

is used to determine aerodynamic forces and moments is the resultant of three
vectors

VaaV-Ve-W 642l

where V 1is the velocity vector of the missile center of gravity referred
to inertia axes, Vﬁ is any wind velocity vector and Vé is the velocity

component of a particle of air due to the earth's rotational velbcity.
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i J k
Ve=weXR=|0 0 6.4-25
XN Yy 2y
or
Vo = =1 w Yy + 3 @ Xy 6.4-26
If the components of Vs are ug, Vg, and we &8s shown in Figure 6-5
then
-‘;a"i“a"’J"a."‘k"a 6.4=-27
We can express -V- as
Vaiu+jvekw 6.4-28

and from equation (6.4-26)

Vo = =1 (0 Y) +J (wp Xy) 6.4-26
therefore
Ug = u +we YN - uy
vV ewe XN - VW 6.4-29

Va

The angle of attack o and sideslip B are defined by Figure 6-5. It
is assumed that the missile sideslips first then performs an angle of attack.

From Figure 6-5 it is seen

COS Q B e 6.4-30
Vg cos B :

8in @ = ————te 6.4=-31
Va cos B

cg7<
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gin p = -8 . 6.4-32
Va
or
o = tm-l ‘La- 6.1‘-33
B = sin~l 28 6. b3k
Vg

6.4.7 Angular velocity rates.- If we designate py, qa and rg4

as the angular velocity terms which cause the aerodynamic moments about

the missile center of gravity and note that

wa = i pa +J Qa + k ra

6.4=35
and ® =1p +Jq +kr
then o
@-a-%ﬁﬁ 6.4-36
where V x R is a correction due to the curvature of the flight path.

2
R
This correction is small and therefore usually omitted.

The density p is a function of altitude h and would have to be
known to perform a computation. The computation of initial conditions to start

the problem is a major task and will not be discussed here.
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CONCLUDING REMARKS

This has been a brief and rapid introduction of the equations of
motion =2nd trajectories of a rigid fin stabilized missile with variable mass
for the genera! case of all six degrees of freedom. If time and space
permitted, much more could be said about reducing the general six degrees of
freedom to two or three degrees of freedom and simplifying by other
techniques such as roll and yaw stabilization. The equations of motion
could also be presented referred to wind axes and stability axes, and
compared with those usually found in the literature.

It should be noted further that there are also spin stabilized missiles
which entail other effects not described here such as magnus effects,
groscopic effects, aerodynamic effects due to spin and cross-spin, etc.

This is another subject in itself, and is not dealt with in these notes.
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APPENDIX 6-A

Summary of Formulas Pertaining to the Development
From the geometry of Figure 6-l1wesee the angular velocities about the

body axes are given by

p=9%- @ sin ©
q= 9 cos P+ @ sin @ cos O 6.A-1

T = & cos 6 cos 9 - 0 8in @

Fquation (6.A-1) can also be written as

‘ya

—3 (q sin @ + r cos Q)

8 = qecos @ -rsin @ 6.A-2

®=p+tan 6 (q 8in @ + r cos )
The engular velocities about the inertial axes Xy, Yy, 2y denoted here by
wa, wYN, and wZN are
wxy = 6 cos ¢ cos 0 - ; sin ¢
wyy = ® sin y cos 8 + 8 cos ¥ 6.A-3
wzyn = v - ® sin 8

The transformation from body axes Xp, Yp, 2b to inertial axes Xy, Yy, N

1s given by equation (6.2-18) which is
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XN 111 m33 m; Xp
YN = 112 m12 n12 Yb 6.A-h

ZN l13 my3 m13  Zp

The direction cosines 1), mlj, and n13y are defined in equation (6.2-21)

A vector quantity referred to Xy, YN, ZN axis system denoted by (=)

is
(%) = ( )XN ig + ( )YN Iy + ( )ZN ky 6.A-5

where

( )XN = lll ( )xb + My ( )Vb +1ny4 ( )Zb

Oy = 112 (g +mp (g + 95 () 6.A-6

»A vector quantity referred to the xy,, yp, 2p axis system denoted by

(-) 1s
where

( )xb= le ( )XN+ 212 ( )YN"' 113 ( )ZN
( )Yb = my ( )xN + myp ( )YN +myx )Z'N 6.A-8
( )zb=n11( )xN+n12 ( )z,N+Dl3 ( )ZN

Integration of equation (6.A-2) ylelds

A
‘D

PN
A
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t
v at + y(o)
W’L v
ftédt+9(o)
9= .

t‘ o)
<p=fo @ dt + ¢

6.A=9
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SECTION VII
INERTIAL SPACE NAVIGATION

7.0 Introduction

In the past few years increasing reference has been made to a new
type of navigation which has been termed Inertial Navigation. The purpose
of this section is to give a brief introduction and discussion of some
of the fundementals of inertial navigation. The material presented is
derived from the various references which are listed at the end of the
text. 1In many cases the text and the Figures presented are taken directly
from these references.

Although the concepts of Inertial Navigation are relatively new the
principles upon which the process is based have been well known for years
and essentially it is a simple application of applied mechanics. In order
to learn something of the subject it will be approached from the standpoint
of trying to answer the questions:

A. VWhat is it?

B. Why do we need it?

C. How does it work?

D. How well does it work?

7.1 What is Inertial Navigation?
One definition of Inertial Navigation has been given as: Navigation

without the use of any radiation, either natural or man made. =- in other

words it is self contained. This definition is of a rather negative nature
that merely gives one of the attributes of an inertial navigation system.

A more descriptive definition would be: A process in which determination

of navigational narameters with respect to the fixed stars is made from

30i<
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measurements of accelleration acting on the body. If the navigation is
soncerncd with position with respect to the Earth (or to another rotating
prlanet) the process would also include a conversion to navigational param-
eters reforenced to the moving earth. An inertial navigation system 1s
then one which is self contained and one that by a process of integration

of imposed accelerations determines changes in velocity and position.

7.2 Why do we Need Inertial Navigation?

The present methods of navigation are considered fairly accurate and
we have so many means of navigating that it is hard for even the navigators
to keep up with them. Airplanes can tzke off and fly half way around the
Earth sand lond on a particuler runway at a particular airport. Bombers
can fly over a desired target area with good precision even in conditions
of bad weather. The comparatively new developments in Omni DME, Loran,
redar nevigation systems, etc. are successful to the extent that additionnl
new methods of nevigation must be questioned as to thelr usefulness.
Inertial navigation does promise to fill certsin needs that are not
adequately met by existing systems. The advantages of inertial navigation
systems can be placed into two categories: military and civil.

Military advantages:

(1) Does not depend on ground facilities for reference

(2) TIs not subject to jemming -- Newton's laws of motion and
gravitation are difficult to tamper with

(3) Fmits no radiation that can be detected by an enemy

(4) By virtue of its independence of outside signals there is no

limit as to how many systems can be utllized simultaneously.

3L
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Civil application advantages:
(1) cowa possibly be used to simplify the existing complex
network of navigational factilities
(2) Would allow continued operation of our commercial transport
fleet in times where enemy attack may be threatened and
the existing pavigational aids would have to be turned off
to vrevent homing in by enemy
Alt tncse reasons are in addition to the obvious advantage in applica-
tion to outer space flight where most of the present navigation schemes
have no meaning.
T-3 How Does Navigation Work?

7.3.1 Basic principle.- Inertial navigation is a rather funismental

application of classical mechanics whereby the postion or change in position
of a2 body is determined from measurements of accelerations. It is an
application then of Newton's Laws of Motion. 1In addition there are other
principles cr facts that have important bearing, such as: (1) Newton's
Law of gravitation which states that every mass particle attracts every
other mass particle with a force proportiocnal to the product of their
masses and inversely proportional to the square of the distance between
the particles; (2) the principle of equivalence in the general theory of
relativity that says gravitational mass and inertisal nass are equivalent;
(3) the spatial direction of the Earth's gravitational field at any point
serves as a unique identification of that point.

This latter point requires further discussion. As will be pointed out

in SECTICN XIV the shape of the Earth is not a rerfect sphere, but it can

("r\(\‘
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be approximated by Hayford's Spheroid cf 1909 which has an ellipticity of
1/297. Because of this shape the normal to the gravity field does not

alweys hesd directly to the center of the Earth. For example at 45° latitude
there is about 11 minutes of are between the plumb bob vertical and the

true line to the center of the Earth. Shown on Figure 7-1 is the geoid
surface which 1s by definition an equipotential surface of the Earth's
gravity field. The direction of the gredient of the gravity potential at the
surfaces ~f the geaid, the force of gravity, is defined a3 the vertical.

This iz d=fin~A by & rlumb bob with its base fixed with respect to the
aurfare of the Ferth. The specific force of gravity is then a vector
addition of the grevitotion specific force and the centrifugal specific

force assrcisted with daily rotation. Because the geoid does not have a
smooth surface, the verticel is not in general parallel to the normal to

the reference ellipsoid at the same position. The angular deviation, called

the station error is generally less then one second off arc.

7.3.2 Coordinate systems.- The uniqueness of the vertical at any

point is the basis of astronomical position. The astronomical latitude is
the complement between a line parallel to the Earth's polar axis and the
local gravity vector. The astronomical longitude is the sngle about the
Earth's polar axis between a reference vertical (usually that at Greenwich)
end the local vertical. The astronomical set of coordinates are very useful
in inertial navigation but unfortunately accelerometers measure with respect
to inertisl space sc that other cocrdinate systems are also necessery. Shown
in Figure 7-2 are the Georantric Inertial coordinate system which is centered

in the eerth with the axis coincident with the Earth's polar axis. Also

wd -
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shown in Figure 7-2 are the Geocentric Earth reference coordinates in
vhich the Z axis is again coincident with the polar axis but the X and
Y axis are fixed in the Earth and thus rotate around the polar or Z axis
at the rate of 15° per hour. Another useful coordinate system is shown
in Figure 7-3 and is referred to as the local geographic reference coordinate.
In this reference system there is the option of alining one of the axes along
a great circle which could include the departure point and destination and
thus would simplify the navigation problem. The significant difference
between the geographic coordinate of Figure 7-3 and the aztronautical
coordinate system is that the latter has the 2 axis alined with the local
vertical rather than normal to the ellipsoid.

Knowing something of the nature of the gravity field about the Earth
and the various coordinate systems which are useful it is well to return
to the question of how does Inertial Navigation work.

T.3.3 Simplified example.- As a simple example consider a cart on a

table top. The cart is initially at rest and a force is applied to move it
along the table top. Its position at any time can be determined by measureing
and doubly integrating the applied acceleration. Mechanizing this simple
problem brings out meny of the significant features of inertial navigation.
First of all since acceleration is a vector quantity accelerometers
must be mcunted on the cart so as to sense the components of the acceleration
with respect to the coordinate system within which the measurement of
position is to be made. Each accelerometer must be accurate and also must be
maintained in a precisely known relationship to the coordinate system —

this latter requirement gives rise to the need for a stabilized mount for

caorT
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the accelerometers that will maintain the desired orientation. Because an
accelerometer cammot distinguish between acceleration and gravity either
the stable mount must be oriented so that gravity components are not sensed
or else corrections must be added to account for this factor.

For such a simple example the components of an inertial navigation
system could be split into three groups: (1) accelerometer package to sense
accelerations with respect to the axis of the cheosen ccordincte systems
(2) a stable platform (which normally uses integreting rate gyros as its
primary instruments) that will maintain the orientation of the accelerometer
package and (3) a computer that will doubly integrate the outputs of the
accelerometers and put in suitable corrections so that position will be
knovm.

When the range over which the cart on the “table top" travels becomes
very large the problem becomes more complicated because the components of
gravity which must be acccunted for become large. In the sketch of Figure
T-4 which shows the X coordinate tangent to the surface of the Earth it
can be seen that as X Dbecomes large with respect to the radius of the
Earth the force of gravity (which effectively lies along the line from the
center of the Earth to the position of the cart) tend to become alined along

the X axis. The acceleration sensed by the X accelerometer 1s

Ay = x + gy
where g, 1s the component of gravitational force. This component may be

expressed
a2 x

° (a + h)>

8x = 8
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If it i5 2s~umed that there is a negligible chonge in sltitude the

exprastion may be simplified to

w X

2 = &
ani 31111 provide an adeguate approximation for 8y for relatively smoll
hanges in X.

7.3.4 Schuler tuned vendulum.- Even though it is within the capability

of & computer to calculate gx Tfor large changes in X this operation places
rather stringent requirements on the computer. Another, perhaps morereasonabice,
epproach is to maintain the orientation of the stable platform upon which the
accelerometer is mounted so that it will be normal to the force of gravity

an: thus the accelerometers would not sense the components of gravity.
This could be done by mounting a pendulum on the stable tsble so that as

the pendulum alined itself with the gravity forces the table would be

alined perpendicular to the pendulum. This problem was first approached

by Dr. Maxmilian Schuler, a German scientist and professor and it was he

who first pointed out that what was needed wes & rendulum with vertical
determination characteristics independent of vehicle movement. A simple
pendulum having & reasonably long arm would be subject to disturbances

away from the vertical, if its base were accelerated. To be free of such
errors the length of the pendulum arm would have to be equal to the radius

of the Earth. With such a pendulum the point of suspension or base of the
pendulum could be moved about over the surface of the Earth without dis-
turbing the pendulum mass and thus the pendulum would alwveyes indicate the

vertical. Such a pendulum is, of course, impossible to build and even &

distributed mass type of pendulum having the same dynamic characteristics

LT ol ]
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would be virtually impossible to build because of the extremely small
distances required between the centroid of mass and the pivot point.

Because the pendulum is essentially a second order undamped system -
it is possible to construct a servo system having the same dynamic

characteristics. The period of a pendulum is determined from the

T-2x‘§ where L 1s

the length of the pendulum and g the gravitational acceleration.

formula

The Schuler pendulum has a period of 8i.lL minutes. A simplified

schematic of the operation of a servo system Schuler Pendulum is

shown in the following diagram:

e

‘ - X | X
| x*—"—’“Ax=X+gsinae& —fdt fdt ***** —

b

0
) 1l

Op = angular rotation of the table upon which the accelerometer is mounted
8, = angular arc over the Earth's surface covered by the x movement
of the table

ee = error in alinement of table normal to true vertical

368<
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The accelerometer is mounted on a tilting platform whose angle of tilt is
determnined by a motor which is driven by the doubly integrated output of

the accelerometer times the constant K. The transfer function relating

X to the applied acceleration has a characteristic equation of the form

p2 + K= 0 vhich indicate an undamped second order system having a
frequency of oscillation equal to K. If K were adjusted to equal %

the oscillatory characteristics would be the same as a Schuler pendulum

and would te said to be "Schuler tuned"”. With such a system the tilt angle
of the platform becomes equal to the angular arc that the platform has
treversed over the Earth's surface. Thus if there were a way to "remember"
the orientation of the vertical at the starting point the position of the
via~tormu could be obtained by measuring the angle between the instantaneous
vertical and the vertical at the start of the problem. This angular position
cnuld easily be related to latitude and longitude angles by alining the

X and Y saccelerometers along and perpendicular to the meridian lines of
the Earth. Thus there are means of determining position both analytically
by suitable computer operations on the double integral of acceleration and
gecmetrically (or pertly geometrically and partly analytically) by measuring
the <riontation of the vertical with respect to the reference coordinate

syste,

T+3.5 Hardware components.~ To fully understand the mechanics of

inertial navigation it is desirasble to understand the operation of some of
the basic components -- the accelerometers, rate gyros, stable platforms,

romputers, etc,
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Figure 7-5 is a schematic drawing of the HIG type, single-deygree-
of freedoin gyroscope originally developed by the Instrumentation
Laboratory, MIT. Basically, the gyro consists of a spinning wheel driven
by an electric motor, mounted on preloaded ball bearings and contained in
a hermetically sealed can or float with shaft extensions. The float is
completely subuerged in a viscous fluid which has the same average density
as the float and shaft. This serves to reduce friction about the axis
defined by the pivots design. Coaxial with the shaft is a signal generator
which gives a voltage proportional to the angular displacement of the float
relative to the case, and a torque generator which can be used to apply
torque to the float.

The basic principle of operation of the gyro can be explained in
terms of the three axes shown in Figure T-5. The spin reference axis lies
along the angular momentum vector (spin axis) of the wheel when the signal
generator output is zero. The output axis is normal to the spin reference
axis, and is the axis sbout which the float is free to turn. Taz input
axis is normal to the output axis and spin reference axis. The input
quantity to the instrument is an angular motion of the case, relative to
inertial space, about the input axis. The resulting output is a movement
of the float relative to the case which results in a voltage from the signal
generator. Tae operation is explained by the familiar physical fact that
when a torque is applied to a spinning vheel so as to change the direction
of its spin axis, the spin axis tends to align itself with the torque vector.
Conversely, when the axis of a spinning wheel is forcibly precessed or rotated,

the wheel through its bearings exerts a torque about an axis perpendicular to
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the axis of forced rotation. In the HIG gyro, movement of the case about
the input axis causes a force precession of the gyro wheel about this axis.
The gyro wheel thus exerts a torque on the float about the output axis.
Initially, this torque accelerates the float, but as the float gains angular
velocity, the viscous shewr torque reduces the acceleration to zero and the
float reaches a steady angular velocity. The &ro torque is then balanced
by the viscous shear torque and the output angular rate is proportional to
the input angular rate. The fact that the output signal is proportional

to the integral of the input angular rate is the source of the term "
"integrating gyro". The gyro thus serves as an attitude reference.

RIG gyros act as precision angular motion sensors, rather than sources
of torques to overcome friction or unbalances. Normally, they have an
operating range of only a fow 427rees and to prevent various cross coupling
errors, input angles should be kept small., Therefore, for inertial guidance
use, gros are usually mounted on a platform or base which is servo-driven
to maintain the gyro outy.' &' ur near a null. The platform thus remains
fixed in orientation relative to inertial space, or is rotated at a rate
2:hwrained by torque generator input. A much simplified sk=tch of the one
degree of freedom stabilized platform is showm in Pigurs T=-6. A typical
three degree of freedom stabilized platform configuration is showm in
Figure 7-7.

Figure 7-8 1s & schematic of a practical type of accelerometer
instrument based on the HIG gyro construction. The seismic mass exists in
the form of a pendul.iz and the force generator is the torque generator. The

pickoff is the signal gensrator. Flotation virtually eliminates uncertainty
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friction torques at the pivots. Because of the pendulous nass, acceleration
of the instrument along the input axis creates a torque about the float
pivot axis. This torque causes rotation of the float and a consequent
signal generator voltage proportional to 6,. This voltage is used to
generate a current which 1is applied to the torque generator to give a
torque which "constrains" the pendulum and keeps 8, small. The current, I,
is thus proportional to acceleration along the input axis. The gain of the
feedback system must be kept quite high so that deflection of the pendulum
under high input acceleration is small. Otherwise, a “"cross talk" torque
is developed which is proportional to the product of the acceleration along
the pendulous reference axis and the sine of the deflection angle eo.
Inst- wents of this type, called force feedback pendulums or constrained
pendulums, are available commercially. They are made with a wide variety
of dynamic raange and frequency response.

Velocity end position are the quantities of interest in navigation,
rather than acceleration. Increased accuracy and reliability may sometimes
be obtained by performing integration in the accelercmeter. Basically, this
is done by making the force acting on the seismic mass proportional to a
rate of some kind. For instance, the current fed to the torque generator in
Figure 7-8 might be applied in pulses of constant area but variable rate.
Pulse rate is then proportional to acceleration and total number of pulses
to velocity. Another useful device and one used by the Germans in the V-2
15 thz pendulous gyro accelerometer (PGA). This instrument is a pendulum

in which the force generator is a gyroscopic element. Figure T-9 is a

QLA
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schematic of such an instrument based on the HIG gyro construction. The
output of the signal generator is fed to the servomotor which rotates the
gro case about the input axis at a rate suck that the torque developed
by the gyro elzment just equals the pendulous torque. The angular rate
of the gyro case is thus proportional to acceleration and the total angle
turned by the gyro case is proportional to velocity. As with the instru-
ment of Figure 7-8, the gain of the feedback loop must be kept high so
that 6 1s very small. The torque generator of the gyro can be used to
apply additional torques to the gyro float which add to the pendulous
torque. In this way, gravity may be alded to the thrust acceleration to
give true acceleration and velocity.

7.3.6 Typical configurations.- As is usually the case when engineers

are allowed some freedom in development of a system to do a particular job
thex:e are a number of configurations of inartial navigation systems in
operation or in the design stage. Figures 7-10, 7-11, and 7-12 present
three basic configurations of inertial navigation systems. These systems
differ quite markedly in the degrees to which the computer must store the
reference coordinate system and determine the desired navigational data.
Figure T7-10 presents a three gimbal system in which the accelerometers
are mounted on the same platform as the rate gyros which are the heart of
the stable table. In this case the table is operated ala the Schuler tun=zd
pendulum so that one axis tracks the local vertical -- the reference
coordinate systems being stored analytically in the computer. The stable

platform instruments the astronautic reference coordinate system by

prec:ssing the gyros. Navigation data is obtained as signals representing
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velocity or acceleration measurements relative to the geocentric inertial
coordinate system of Figure 7-2 and converted into Earth data by computer
operations that comvert the signals into the geocentric Earth coordinate
of Figure T-2.

Figure T-11 shows a five gimbal system in which the platform on which
the accelerometer are mounted is Schuler tuned to track the local vertical
and instruments the astronautical reference system. The stable platform
with the rate gyros is stabilized in inertial space and thus instrument the
geocentric inertial coordinate system. This configuration allows direct
anzilar measures to determine positions on the Earth's surface relative
to the astronautical coordinate system.

The configuration shown in Figure 7-12 is also a three gimbal system

vhere the accelerometers are mounted on the stable table which is maintained
in inertial space. The platform instruments only the geocentric inertial

coordinate system and navigation data is obtained from computer operations.

7.4 How Well Does an Inertial Navigation System Work
An inherent disadveantage of an inertial navigation system is that the
errors in the increase with the problem time. Determining position by
doubly integrating an acceleration measurement causes any error in measure-
ment to show up as a second power function of time. Because of this time
dependency of the errors the accuracy requirement of the accelerometers and
the rate gyros used to provide stable table operation are much more stringent

than has been required of such instruments in previous mechanisms. For
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an ICBM type of operation the accuracy requirements of accelerometers and
rate gyros for each 1000 foot of tolerable error are glven as a function
of range in the graph presented in Figure 7-13.

The fact that the operation of inertial navigation systems (which
operates independent of outside signals) are based upon nonvariant phenomena
(Newton's laws of motions, ete) is an adventage in that any increase in
accuracy of the system components results in increased accuracy of the
overall system.

Using the principles of the Schuler rendulum enables the system errors
to be limited to a somewhat restricted type of oscillatory buildup -- at
least on the axes with respect to which the pendulum can be utilized. In
this case the amplitude of the error oscillation would be dependent upon a
combination of such factors as initial misalinement of the pendulum,
accelerometer bias signals and "cross talk" between acceleration components
along the other axes caused by misalinement of the stable table. Because
the angular drift of the stable table is a function of time the oscillating
limits of the computed errors of even a Schuler tuned system increase
with time. The principle of a Schuler tuned system has no application to
the vertical axis (altitude axis) and thus the errors in altitude measurement
would show a parabolic variation with time. These errors in altitude measure-
ment would also affect the measurements along the other axes where the
Schuler tuned principle is applied, because the error in altitude would
be an error in the effective length of the pendulum and would cause the
period of oscillation to be in error as compared to a Schuler tuned system.
This difference in dynamics would cause additional errors in the measurement

of acceleration due to sensing gravity components.
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SECTION VIII
GUIDANCE AND CONTRCL OF SPACE VEHICLES

8.0 Introduction

Guidance as used herein is concerned with the obtaining of input

information required to achieve a desired trajectory (as related to

space flight), and flight control is concerned with the detailed control
of the attitude and velocity (both direction and magnitude) of the space
craft for the same purpose. Guidsnce and flight control systems have
reached a state of development where they appear capable from component
performance and accuracy standpoints of use in many types of space
operations, In spite of this apparent cepability, much additional research
and development effort will be required in this area before any sart of
routine space operations are possible., This situation is chiefly a result
of the rzther extreme complexity of current high performance systems in
reletion to the reliability of components and the long operating times
required in most space missions, Therefore, in regard to the systems
to be described, the problems primarily relate to improvements in reliability
and flexitility and reductions in complexity, size, weight, and power
requirements., Such improvements may occur in components, system configu-
rations, or in the invention of entirely new guidance and control concepts.

As the basis of discussion of guidance and control systems, we will
break down space missions into their various phases such as launching,
-orbiting, space trajectories, and re-entry. For each mission phase, an
attempt will be made to describe the operational concepts; the guidance

and control equipment used, contemplated or needed; and the problem areas.
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8.1 Launching

As currently envisioned the earth launch phase of most space
operations will closely resemble the launch operation of ballistic missiles,
A typical launch trajectory is shown in figure 8-1., A multi-staged
vehicle will 1ift off approximately vertically and will be stabilized in
the attitude through use of an automatic flight control. After a period
of vertical flicht the missile will perform an unguided gravity turn by
programming the missile to stabilize at tilted attitudes maintaining
near zero angle of attack. There also may be periods of unguided coast-
ing following burnout of the various stages. Active guidance will take
place in connection with intermediate stages and perhaps in connection
with the final stage, although in some current satellite vehicles the
final stages are unguided and stabilized through spinning. The main
purpose of the guidance is to control accurately the direction of the
velocity vector at burnout of the last guided stage. For unguided final
steges it is necessary also that the attitude of stage be closely controlled
at firine and regulated during burning. Another important guidance function
is to accurately control the velocity cutoff of the final stage. A some-
what less critical guidance function is the control of the spacial or
geograchic position of the vehicle at final stage cutoff.,

A number of distinct types of guidance and flight control equipment
ere currently used in the performance of the functions just discussed.
The orimary types involve either inertial sensing oar electromagnetic
tracking. Prazctically all the attitude systems used for launch control

incorporate inertial sensors (gyroscopes and linear accelerometers).
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A block diagrsm of a typical attiutde control system is presented in
figure 8-2. In an elementary system, the sttitude stabilirzation may

be obtained from three single degrees of freedom integrating rate

gyros, orthogonally mounted on the body. A high gain control loop is
used to accurately slave the missile attitude to the gyro references in
order to avoid gyro coupling effects. In fact, less than ten degrees of
gyro gimbal freedom is ususlly provided,

The chief problem associated with these high gain attiutde control
systems concerns the svoidance of dynamic instabilities resulting from
coupling between the control system and the structural or fuel sloshing
motions. In most cases the booster configuration is controlled by jet
deflection and the control gains must be sef high enough to stabilize the
system under maximum q conditions (where the configuration's aerodynamic
instability is greatest). Tﬁis requirement results in an excess in
stability near 1ift off and the short period frequency under this condition
is fairly high (say 1 cycle per second). Unfortunately, the full fuel
configuretion results in the lowest frequency condition of the structural
modes, and the fundamental fuselsge bending mode may have a frequency
of just a few cycles a second. An example of the bending modes and their
frequency distribution is shown in figure 8-3. The frequency of the fuel
motion in the missile may be even lower, and this motion also becomes
critical some time after 1ift off. In most liquid fuel rockets it has
been necessary to use scme baffling in order to provide damping tc the

fuel metions., If the open loop frequency response of the control system
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is sufficiently high it is possible to add damping to the lowest frequency
modes by control action. This approach requires careful choice of sensor
location along the body in order to obtain proper phasing and/or requires
the use of electronic shaping networks for the same purpose. (See

figure 8-2.)

These techniques are not the complete sclution to the problem, however,
because there are always present higher frequency structural modes which
may be excited by control action, In fact, in one case it was necessary
to reduce the control response by the order of 100 decibels from its
stztic value in order to aveid trouble with a moderately high frequency
mode (only a few octaves above the first-bending mode). This reduction
is ordinarily accomplished by electronic filters heving a very sharp
response cutoff or by the use of notched filters at each critical frequency.
One problem here is that the frequency and mode shape of these oscillations
vary as the fuel is used., (See figure 8-2.) Deliberate use of certain
nonlinearities in the control system is sometimes helpful. For example,
small amounts of friction or hysteresis may prevent the control from
responding to small-smplitude high-frequency signals generated within
the structure. Of course the basic control mode will have a limit cycle
oscillation under such a condition, but this oscillation may be small
enough to be tolerable.

The use of lsrge solid propellants as first stage boosters would
obvizte the fuel sloshing probiem, and for this and other reasons, they

will undoubtedly be used. These solid engines, however, also require
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solution of certain problems, These problems include the control of
thrust direction without high actuating forces (particularly friction)
and the accurate control of thrust cutoff. A related but somewhat more
secondary problem is that of thrust modulation of these engines.

The attiutde control systems just discussed (using body mounted gryos)
can also be used as an inertial guidance system for launching space vehicles,
The boosters would be stabilized in roll and yaw and the pitch gyro
reference would be programmed so that the missile attitude would follow
a trajectory of the type outlined previously. If the thrust also could
be accurately controlled to a desired program this attitude system would
be all that is needed to achieve a desired launch trajectory; however,
because the thrust cannot be programmed with the required accuracy an
integrating accelerometer is mounted on the body to measure accelerations
along the longitudinal axis (mean thrust direction) and with a gravity
correction established from the pitch attitude program the direction or
magnitude of the velocity vector can be determined., Guidance systems of
this simple type have been used to launch satellites and can be used in
other spece operations where angle inaccuracies of the order of one-half
degree are allowed,

If greater precision is required from an inertial system, the three
gyros can be mounted on 2 gimballed platform which is slaved to the
reference nulls of these gyros. Three orthogonally located integrating
acceleromsters cen be mounted on this platform to establish the velocitity.
The superior accuracy of this system results from the fact that the

coordinates of the platform can be maintained with greater accuracy *'.an
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those of the missile itself in addition to the fact that all three
components of accelerations are measured.

The chief problems with inertial systems relate to initial align-
ment (setting in the proper initial conditions), drift in the platform
orientation, and inaccuracies in the integration of the acceleration.

The last two problems have received much attention and components have

been developed with extremely good predicted precision. The word "predicted"
is used because one of the rezl problems associsted with this equipment

is that of testing in the proper environment. The high steady accelera-
tions associated with the launch condition plus the vibration environment
obviously introduce structural deflections, unbalance, etc. in excess of
those encountered in a laboratory environment. On the other hand, the
extreme theoretical precision associated with the zero g environment of
space flight cannot be checked in a ground based laboratory,

As has been implied, the errors of an inertial guidance system increase
with time of flight., It is possible to get velocity magnitude and direction
information from other types of guidance systems wherein errors are pre-
dominately a function of distance, Into this category fall a number of
ground based equipment using the propagation properties of electromagnetic
waves. Perhaps the best known device of this class isthe conical scan
treckine radar. In this system an indication of the line of sight to the
tsrget is obtained as shown in figure 8-L. The center of the lobes of
transmitted energy is made to rotate in a conical pattern and the

direction to the target is determined by the relative strengths of the
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return signal during verious portions of the scan. On the basis of this
information the tracking head (antenna) is driven to keep éointing at the
target. Angle information is taken right off the tracking head gimbals,
Range information is obtained by determining the time interval between
the transmitted pulses and their reflected return.

The chief problems with radar tracking systems are achievement of
the desired range capability and noise in the angle tracking system,
This noise problem is aggravated in the launching problem because it is
desired to obtain accurate velocity information and this involves
differentiation of the basic positional information. To the radar the
appearance of the target somewhat resembles the appeasrance of a crystal
chandelier to eye, Slight motions cause the bright areas to shift
around. In the case of the radar there is a tendency to track at random
verious perts of the missile., This condition is ageravated in the case
of the conical scan radasr by the fact that it depends for angle information
on the comparison of the return signal strengths at slightly different
times (scan positions). The reader, therefore, cannot distinguish between
a general fading of the return from a difference due to the angle error.
Fading at the scan frequency can cause the radar to move entirely off the
target,

The fading effect or angle tracking can be eliminated by using a
monopulse radsr in which the return signal strength comparison is made
between a single pulse simultaneously lobed in slightly different directions,

The noise due to glint is still present in this system, however. Another
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way to improve radar position information is to use two (or more) radars

in conjunction with long and accurately measured base lines. In this case
the positional information can be obtained from the range measurerents
through use of triangulation techniques., For extremely large ranges the
base lines must be proportionately larger to be effective. For flights
deep in solar space base lines between two or three 22,000 mile satellites
have been suggested,

The problem of range extension of radars and other electromagnetic
sipnaling devices is large one of increasing the peak transmitted power
and increasing the signal gathering capabilities of the receiver. The
last requirement may dictate the use of extremely large antennas (the
size of a football field or even larger). Range extension can also be
improved through use of a beacon (transponder) in the target. Use of a
beacon may also improve the angle tracking accuracy.

Another factor which may affect the propogation of electrqmagnetic
radiation between the earth and vehicles in space is the presence of the
inosphere, It is well xnown that this ionized layer reflects electromag-
netic waves; however, it is the writer's understanding that the ionosphere
will not have much effect on high frequency waves., Refraction of the
waves which result from this source will produce small angle tracking
errors,

Because during the launch phase the guidance accuracy is most critical
to velocity errors, it is desirable to obtein the velocity information
in a more direct manner than by the differentiation of positiour infarmation.

Doppler radar cen accomplish this objective. As its nr ‘e implie-~ its
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operation depends on a measurement of the doppler frequency shift between
transmitted and reflected waves which results from the targets velocity.
The frequency shift as a fraction of the transmitted frequency is directly
proportioned to the target velocity radial to the transmitter and inversely
proportional to the velocity of propogation of the radiation. Because the
velocity of propogation of electromagnetic radiation is extremely high
(186,000 miles per second) the frequency shift must be measured with
extreme accuracy. If the velocity of a vehicle is desired to one hundred
feet per second the frequency must be measured to roughly one part in ten
million. Thus one of the chief problems associated with the use of doppler
systems for space flight is the achievement of ultra stable oscilletors,
Another problem connected with the use of doppler techniques is that only
the radial component of velocity is measured, This problem can be cir-
cumvented through use of multiple installations on accurate base lines,
The total velocity can be determined from such an arrangement,

Some of the more sophisticated methods of 1launch guidance do not
depend on the use of a single type of equipment but endeavor to make
use of the best features of two or more types, For example, a tracking
radar might be used for long period informstion because it is not subject
to the drift problems of the inertial system; however, an inertisl system
might be used at the same time to provide short period guidance. This
arrangement would allow very heavy smoothing (filtering) to be applied
to the radar data in order to €liminate noise, Similarly a doppler

system can be used for velocity information in conjunction with use of
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a tracking radar system for position information. This arrangement avoids
the noise problems associated with data differentistion and also avoids

the drift problems associated with data integration.,

8.2 Orbiting the Earth

Once a vehicle hes been established in orbit the complexion of the
guidance problem changes. Motions about the body axis are essentially
neutrally stable (no inherent modes of motion exist), and in most cases,
there are no significant external disturbances. It is necessary to apply
only small control moments to reduce any initial angular velocities and
to keep the vehicle pointed in a particular manner (if desired). Unless
the vehicle is launched into an orbit close to the earth where the effect
of aerodynamic drag msy be significant the trajectory is stable and
predictable and desired minor modification to the orbit can be made by
relatively small thrust kicks in the appropriste direction and at the
appropriate point,

On the other hand the orbital phase of the operation may extend
over very long periods of time and cover large distances over the surface
of the earth. The first factor mentioned dictates extreme emphasis on
simplicity, reliability, drift and low power consumption of the guidance
and control systems to be used. The second factor implies that on-board
guidance and control systems wculd be desirable., The ground based systems
described in connection with the launch operation (and other types of
ground systems) can and are being used in connection with orbiteal
operations but their use is limited by the extreme size of the network

required for complete surfsce coverage,
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. Most advanced satellite missions require some sort of attitude
control. Examples of such missions are earth reconnaissance missions
and stellar observation missions, Some of the most elementary attitude
.control systems include the sensing of gravitation or centrifugal force
gradients by control of the wvehicle geometry (for earth observation) and
the use of solar photonsails (for solar observation). The use of a drag
device for stabilization is possible in near earth short-term orbits.
These schemes are characterized by extremely small restoring moments and
their use is dependent upon the response times achievable as compared to
those required in a particuler operation. Their practicality is also
decendent on the magnitude of distrubances encountered both externally
and internally. Another type of simple altitude system which have been
used is simply spinning the entire vehicle. The attitude stabilization
. in this cese is with respect to fixed space,
Optical svstems arpear well suited for orbit attitude control and
‘otpgr guidance functions in space. These systems are capable of very
Hi;h resolution and are well adapted to use by the human, This combination
is felt by many to add up to highly reliable system, Attitude stabilization
with respect to the earth can be accomplished by a 360° scan of the horizon,
Stabilization with respect to the sun, planets, or stars can be obtained
through use of an astro tracker. Systems of this type require a means
for conversion of the sensed quantities into control moments. This

ccnversion involves a human pilot or autopilct and suitable moment producing

devices, Such devices are now envisioned as inertia wheels or small reaction
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jets., Problems associated with such systems are largely in the areas

of design information or development, More information is needed on
disturbances (particularly internal), on power requirements (novel power
sources need to be developed), on the design of small controllable
rockets or high reliability, and on the reliability of components and
subsystems in general.

In order to perform such functions as orbit transfer or to re-enter
from an orbit, information on such parameters as geocentric radius
(altitude), velocity,and position. These measurements could be made
using inertial platforms of the type already described. The inertial
system has an advantage in this and other space flight applications
in that it is a self-contained on-board system. It does appear, however,
that some backup system may be required in all but short-term operations
because of the long-period drifts associated with the inertial systems.
The ground-based systems previously described could also be used in
orbit determination., In addition, another type of ground-based system is
used for such messurements. This system involves the determination of
the direction of arrival of a wave front trensmitted from the target.

The direction to the target is along a line normal to this front. A
phase compariscn between the signal received at stations along known
base lines is used to establish the direction of arrival of the wave
front, This type of equipment has the advantage of being basically
passive in neture, It is capaﬁle of obtasining position information

on any tsrget for which a transmitted signal can be detected., It does,

however, require a fzirly elatorate ground range communication and
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computing system, Attitude of a satellite with respect to a ground station
can also be obtained using such equipment provided the derice for measuring
angle of arrival is aboard the satellite.

Optical systems might also be used to advantage in obtaining velocity
and position information as illustrated in figure 8-5, For a satellite
maintaining a fixed orientation with respect to the earth (as, for example,
by means of a horizon scanner) the spacial velocity parallel to the earth's
surface can be obtained from rate gyros providing the geometric radius
is known (6‘8 R::). This radius measurement might be obtained by stadia-
metric methods using the horizon scanner or by a radar altimeter. Similarly,
instantaneous velocity and position with respect to a point on the earth
could be obtained optically for an attitude stabilized satellite by
toroeraphic identification and drift measurement.

It should be menticned that the close in phases of merging of orbital
position of two vehicles might very possible be accomplished by homing
techniques., The type of guidance system might be much the same as those

developed for air-to-air or surface-to-air missiles and could empl oy

ortical, radar or infra red tracking.

8.3 Space Travel

The guidance and control devices already described for the orbiting
vehicle can also be applied to a vehicle traveling in cislunar space or
at even grester distances, Thgre is likely to be one difference, however,
Although guidance of vehicles in initial orbiting nesr the earth may often
be accomplished with a fairly elementary computation routine, the trajectories

R A

Code<



8-1hL

in space will dictate the use of fairly complex computers in connection
with the guidance function. Coupled with long travel time, this computer
presents a serious reliability problem. An example is given in a psaper
by Xenakis in which a circumnavigating lunar trip ending in a re-entry

to the earth's atmosphere was considered, The trip time was roughly ten
days. The system consisted of an astro tracking system, rate gryo control,
inertia wheels, and a computer. The computer was the dominating influence
in lowering the probability of success. Using failure rate data for a
modern airborne fire control computer but only considering one-tenth

the computer capacity, the probability of success of this mission was
0.22., Replacing the computer by a human pilot raised the probability

of success to 0.70; however, the probability of success of the computer
equipped system could be raised to 0.6L through use of intermittent
operation., Even with this intermittent system, the probability of success
of a one way trip to Mars would be low (less than one in twenty) because
of the long travel time assumed (2LOO hours).

Guidance accuracy requirements for such missions as lunar impact,
lunar circumnavigation, or large radius lunar orbits are not great. Angle
accuracies of the order of one-half degree would be required, however,
if return to the surface of the earth is desired much higher precision
is required. If a braking ellipse re-entry is used, a first pass
perigee altitude precisicn of about 20,000 feet appears to be required,

At 20,000 miles from perigee the angle accuracy would have to be about

0.02 degrees end the velocity accuracy would have to be about 10 fps to
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meet this requirement. Thus a need is indicated for some means of limited

corrective control (thrust control) as the perigee point is approached,

8.l Atmosphere Re-entry

The re-entry into the atmosphere of a space vehicle will be made at
a shallow angle in order to limit serodynamic heating rates to acceptable
values, In general regulation of re-entry angle and position will be
accomplished by small amounts of retro-thrust. The configurations considered
for re-entry vehicle vary widely and include balloons, parachutes, ballistic
re-entry capsules, and seversl varieties of winged vehicles. The winged
vehicles will probably be operated at high angles of sttack (thirty to
ninety degrees) in order to limit the heating rates end/or the total
heat input, Ballistic re-entry bodies will be high drag configurations,
but ultimetely might utilize small amounts of 1ift for maneuvering,

The significent addition to the guidance and control problem here as
compared to other phases of the mission is the importance of aerocdynamic
1ift, dreg, stsbility, and control. Blunt (approximately flat faced)
€d vehicies at extreme angles
of sttack (epproaching ninety degrees) are characterized by high drag,
negstive lift-curve slopes, and very small amounts of static stability.
2ctuelly at angles of attack approaching ninety degrees the resultant
force coefficient shows little vsristion with angle of attack both as
to its magnitude and as to its direction with respect to the body,

The acceleration time history during re-entry, therefore is controlled
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by controlling the trajectory through the atmosphere, Because no immediate
effect on the accelerations results from control acticn piloting problems
are likely to occur. Adding to this difficulty is the effect of the
nerative lift-curve slope., The vehicle must be pitched down in order

to apply 1ift in an upward direction (puil out).

Another problem common to all re-entry configurations is low damping
of tre short-period medes, In fact, the regative lift-curve slope associ-
ated with the blunt configurations may make the damping slightly negative
in this case. In general, however, the amplitude of this oscillatory
motion tends to decrease during the re-entry because of the increasing
density. The decrease in amplitude is approximstely proportional to the
decrease in period because in the absence of continued disturtances the
energy in the oscillation will remain about constant, These conditions
result in the maximum angular accelerations increasing in proportion to
the incresse in period. In the case of the blunt body, these motions
should not produce significant transverse accelerztions nor oscillations
in the totazl accelersticns for the reasons given previously. This result
would not exist for wing vehicles re-entry at angles of attack of 35 or
liS degrees.,

The winged vehicles operating in the range of LS degrees angle of
attsck may also encounter problems associated with strong aerodynamic
and inertial coupling of the moments about one axis due to motions about
anotter. This problem is particularly difficult if the angle of attack
must be veried. Although the effects might be compensated in the design

(or by automatic means for one angle of attack, such compensaticn would
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not be possible over a range of angles of attack. Control deflection
coupling has been found perticularly bothersome. In certain instances
the moments produced about the control axis has been smaller than the
moments produced azbout another axis,

Added to the perhaps more subtle problems previously mentioned, there
are the problems relating to the rapid changes in control effectiveness,
stetic stability, trim, and response associated with the rapid veriations
in Mach number and dynamic pressure during these re-entry maneuvers, These
chezracteristics will require considerable adaptive capabilities on the

part of the human pilot or the sutopilot,
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SECTION IX
EI.LEMENTS OF ROCKET PROPULSION
9.1 History of Rockets

The history of rockets will be briefly discussed. Only those few
names and dates which are considered sufficient for a brief outline of the
subject will be mentioned.

The first recorded use of the rocket occurred in 1232 A.D. when the
Mongol, Ogadai, the third son of Genghis Khan, began his attack on Kaifeng,
capital of Honan Province in China. Rockets were used by the defenders of
Kaifeng and were described as fire arrows. They were nothing more than
rockets attached to arrows to increase their range,

It is probable that the rocket principle wes known to the Greeks
several centuries earlier, possibly as far back as the 8th century, GCoing
back still farther the Chinese have been credited by some with the use of
erunpowder rockets as esrly as several centuries B.C., Of course, all
oropellants used in those times were solid, In fact, gunpowder or its
variations was the only known type of rocket propellant until early in the
20th century.

Assuming the 13th century as the starting point in rocket history,
the most rapid advances were made in the Orient during the next 500 years.,
The Irndian soldiers used large numbers of rockets with telling effect
against British troops during the Indian campaigns. Their success aroused
the interest of many in England, one in particular being Sir William Congreve.

He began earnest study in 180L. His rockets were used against Napoleon
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and also sgainst American troops in the War of 1812....whose red glare
is mentioned in the Star-Spangled Banner.

The long, trailing stick on the rocket which was used for stability .
was eliminated around the middle of the 19th century. It was replaced by
small curved vanes built into the path of the jet which were able to spin-
stabilize the rocket. This idea of spin stability was also applied to
artillery shells by rifling the bores. By the end of the 19th century
the rocket was replaced by artillery because of this increased accuracy due
to rifling and because of rapid developments made whereby the range of the
artillery was greatly increased.

In 1903 Ziolkovsky of Russia made a definite proposal for a liquid-
propellant rocket unit in an article dealing with the possibility of rocket .
space travel, Nevertheless, credit for rebirth of rockets in the 20th
century is generslly given to Dr. Robert Goddard of Massachusetts. Although
the basic idea of utilizing the rocket principle to attain extreme altitudes
had been conceived in the middle of the 18th century, Dr. Goddard conducted
the first scientific experiments along these lines. He became interested
in the subject in 1909 and began experiments as early as 1915 with solid
propellants. Financial backing for his experiments was provided by the
Smithsonian Institution whc published his report, "A Method of Reaching
Extreme Altitudes" in 1919, the first publication on this subject. In it,
Dr. Goddard claimed it was theoretically possible to send a rocket to the
moon. In 1920, Goddard saw the need for liquid-propelled rockets in order

to obtain the required speeds, altitudes, and endurance. In 1926 he succeeded
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in making the first flight with a liquid-propelled rocket, and in 1932,
the first flight of a rocket stabilized by a small gyroscope,

In the meantime, shortly after Goddard had renewed the interest in
rockets others from all over the world followed with work on the subject,
notable ameng these being Hermann Oberth in Germany. Except for Goddard,
the bulk of rocket research in the first half of the 20th century was
centered in Germany,

The rocket was used in World Wer I, but not as an offensive weapon.
In World Wer II many different uses of the rocket as a major weapon were
made by each of the powers., Since World War II, the application of rocket
rower has been rapidly accelerated as exemplified by the development of
intercontinental ballistic missiles and the launching of the artificial
satellites of the earth,

9.2 Rocket Principles

An attempt will be made to derive and explain a few of the more common
guantities associated with rocket motors.,

9.2.1 Equation for the Acceleration of a Rocket.

The propelling action of a rocket motor is derived from the generation
of large quentities of gases by the chemical reaction of suitable
proepllants within the rocket motor. The force which is produced by the
generation of the gases is called thrust and is the basic performance
parameter of a rocket since it determines the speed and distance which

can be obtained.

348<
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The equation for the acceleration of a rocket can be derived from a
special principle of the momentum theorem which takes into account the
fact that a burning rocket is continuously losing part of its mass. This
principle states that for a system of S particles, the vector sum of all
the exterior forces acting on S is equal to the time rate of change of the
total momentum of S plus the rate at which momentum is being transferred
out of S by the particles that are leaving S.

In deriving the equation for the rocket acceleration consider the

rocket shown below

‘\\\\_————ﬂ

:4&-——Nozzle exit
|

S

where the rocket system consists of the metal parts of the rocket, the

unburnt fuel, and the gas inside the geometric surface, The momentum of
the system is equal to the mass of the system times its velocity, that is,
Mv. The rate at which the departing particles remove mcmentum from the
system is just the rate at which momentum crosses the exit surface. If the
velocity of the ges relative to the rocket at the exit of the nozzle is

Ve, then the gas crossing the exit surface has a velocity of v - v,. If

ﬁ ig the rate at which gas is streaming through the exit surface, then the
jet is taking mcmentum from the system at the rate of m(v - Ye), and, by

the sbove principle
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d > (V-
Fexternal (t) d—t-(Mv) tm(v-ve)

= Mv + My +m(V-Ve)

The rate of gas streaming through the exit m which is the rate at which

the fuel is being burnt must equal the rate of change in mass of the systenm,

d o
Tt M m
Therefore
b3 Fexternal (t) = Mv -mv + m(v-v,)
= My - r'nve
or

Mv = ";We + EFextermal (t) (5-1)

9.2.2 Derivation of the Thrust of a Rocket.

Among the external forces acting on the system, as shown in equation
(9-1), are the gas pressures over the surface of the system. The gas
pressures consist of atmospheric pressure over the outside of the rocket
and the jet pressure over the exit surface.

The force due to the jet pressure is peAe where Pg is the jet
pressure 3t the exit surface and Ae is the ares of the exit plane, The
etmospheric pressure is composed of the static atmospheric pressure plus
the aerodynamic forces due to motion thrcugh the air, The force due to

the static atmospheric pressure over the outside of the rocket is just the
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negative of the force that would be produced by static atmospheric pressure
over the exit surface. (This is obtained by summing up all the forces due
to atmospheric pressure acting on the rocket exterior excluding the nozzle
exit surface.) Therefore, in terms of the jet, the force due to static
atmospheric pressure over the outside of the rocket is -Pahe where P
is the static atmospheric pressure,

As previously stated the remaining forces due to atmospheric pressure
are due to motion through the air and are considered as aerodynamic forces
Fge

Collecting the above and other external forces the total external

force is

zFe:d:emal (t) = PeAC- POAC - Fa - ng -F (9-2)

The term Mg, is the force due to gravity and the term F includes all
other exterior forces, for instance, if the rocket is towing out a line, etc.

From equation (9-1) then
Mv = r’rwe + (Pe" Pa)Ae = Fa = ng -F (9-3)

Now consider a rocket held motionless by a test stand. The term My
becomes zero since v = O. Also, there are no aerodynamic forces on the
stationary rocxet, so that F, = O. If tre rocxet is held in a horizontal

position, then Mg, = O. Thus, the term F in equation (9-3) becomes the

thrust, ss measured by the thrust gage,

(o)
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Fo= v + (Pe-ra)Ae (9-L)

or

= (w + - A
F = (W/g)ve + (Pe- py)Ae 0.5

where W is the weight rate of propellant flow. The thrust is composed of
two terms, The first term is known as the momentum thrust. The secend
term is known as the pressure thrust and consists of the product of the
cross-sectional area of the exhaust jet and the difference between the
exhaust pressure and the atmospheric pressure., From equation (9-L) it is
evident that a rocke! exhaust noz:le is usually designed so that the exhaust
pressure is equal to or slishtly higher than the atmosgheric pressure,

If the atmospheric pressure is equal to the exhaust pressure, the thrust
is

F = (Q/Q)Ve

and gives a maximum thrast for a given chamber pressure. The rocket nozzle
design wrich permits the expansion of the propellant products to the same
pressure of the surrounding fiuid is referred to as the rocket nozzle
with ortimum expansion retio,

For uncderexpansion (that is, when the exhaust gas pressure is higher
than atmospheric pressure) a portion of the energy of the gases is not

converted into kinetic energy and is lost as far as thrust development is

concerned,

&1
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If a motor is to operate at different altitudes, the area ratio
(Aoxit/Athroat) must be selected so that it is the best compromise for
the operating conditions. Usually, the nozzle is designed so that it will
operate with a slight underexpansion at the most significant operating
altitude, In this case the thrust at sea level would be reduced. The German

V-2 is a typical example and its thrust variation with altitude is shown below.

Y

¥4

58

Thrust , 1000lb

54 | 1 | |
o R0 40 60 80 100

Altitude 1000t
9.2.3 Effective Exhaust Velocity.

In arder to explsin the meaning of effective exhaust velocity reference

can be made to equation (9-5) which is
F = (Ww/3)ve * (pg = py)Ae

The term effective exhaust velocity is introduced as a convenient way of
defining the thrust in the above equation only in terms of the propellant
weight rate of flow and an exhaust velocity which is called the effective

exhaust velocity. The effective exhaust velocity ¢ is defined as

. F_ - pa)A
c= 73 ve + (pe :a) e9d (9-6)

- -
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then Pe ® Pg» the effective exhaust velocity c¢ is equal to the exhzust
velocity of the propellant gases ve.) With this definition of exhaust

velocityv, then

F = oelw) (9-7)

Typi